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A plane horizontal layer of a fluid with depth d is considered into which heat is intro- 
duced. Within the Boussinesq approximation an exact expression is obtained for the 
eficiency of convection y in transforming the rate of heat supplied into the generation 
of kinetic energy. It agrees with results of numerical and laboratory experiments 
whose data can be used to calculate this value. In laboratory experiments y is usually 
of order 10-8 to 10-6. Using bhis quantity estimates are obtained for the r.m.8. velocity 
of convective motions ii and their time scale r = d/U for a regime where viscosity is 
important. These estimates agree with the results of a number of previous numerical 
experiments over a wide range of Rayleigh, R, and Prandtl numbers. Dimensionless 
convection equations normalized by these scales show the existence of thermal 
boundary layers and of almost isothermal regions within the bulk of the fluid. From 
this, the main regimes of heat transfer follow immediately: the NusseIt number 
N - ( R  - R,,)f for moderate R and N - R* for sufficiently large R. 

A number of simple experiments have been carried out to measure ii and r for 
convection in water. Their results confirm the theoretical dependences of ii and r on 
external parameters and show that a smooth transition region exists from the viscous 
regime of convection to the more fully-developed turbulent one. The latter regime is 
considered by a scaling analysis. The results are compared with the author’s measure- 
ments and other experimental data. 

Similarly density convection is considered which arises by the separation of a 
medium into light and heavy fractions. Differences and analogies with the thermal 
convection are established. Elementary experiments confirm qualitatively the pre- 
dicted dependences for u and r. Applications of the results obtained are briefly 
discussed for studies of heat and mass transfer in the ocean and of convection in the 
Earth’s mantle. 

In  the last section some general properties are considered for various forced flows, 
convection, turbulence and some types of atmospheric circulation, that allow one to 
formulate a ‘rule’ of the fastest response, which asserts that the kinetic energy of a 
fluid system is of order of the supplied power times the fastest relaxation time which 
the system possesses. 

1. Introduction 
A vast literature is devoted to the consideration of convection, but nevertheless 

owing to the complex non-linear nature of the phenomenon the problem is still far 
from its complete solution. Each new problem, slightly different in its setting, requires 
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new analytic attempts, extensive numerical computations or sophisticated measure- 
ments. Theoretically and experimentally convection has been studied mainly by 
prescribing the temperature difference on surfaces bounding the fluid. A lesser amount 
of work deals with the case when the heat flux is defined at  a boundary M occurs in 
most natural phenomena. Besides, the determination of the heat flux due to con- 
vection is an important, and often the sole, aim of laboratory studies, and as a result 
this dependence is now known reasonably well. The present work concentrates on 
this second case, allowing one to derive methodically and very simply a number of 
general and useful results. Many known facts of convection theory are obtained as 
limiting caaes. This leads to  the possibility of understanding better what is generic for 
convective phenomena in general. 

The central result of this study is the derivation (see 5 2) of an expression for the 
efficiency of convection in transforming the rate of heat supplied into the rate of 
generation of kinetic energy of convective motions. Within the Boussinesq approxi- 
mation i t  is exact and of simple algebraic form for a plane horizontal layer and does 
not depend on the nature of the motion, i.e. whether it is laminar or turbulent, 
whether the layer is a t  rest as a whole or rotating. It depends on the Nusselt number 
N but asymptotically the dependence vanishes. This concept unifies all types of 
convection, at least in horizontal layers. 

In  a steady state the generation rate is equal to the dissipation rate of kinetic energy 
in the motion. From here the dependence of the r.m.s. velocity U on external para- 
meters is estimated for a viscous regime, including numerical coefficients for two- 
and three-dimensional cases. This estimate is confirmed by data of several numerical 
experiments on convection over a broad range of Rayleigh and Prandtl numbers. The 
temperature equation normalized by the turnover time scale r = d/U has the inverse 
Peclet number multiplying AT which rather quickly becomes small with the growth 
of the Rayleigh number R, implying the formation of thermal boundary layers. 
From here i t  is easily established that for moderate supercritical Rayleigh numbers 
N N (R- R,,)* and for larger R,  such that 4N 9 1, the heat transfer is described by 
NNB. 

For the determination of the extent of the viscous regime and for checking the 
predicted regularities in U and r for three-dimensional convection a t  large R, several 
simple experiments have been carried out. They confirm these regularities for the 
horizontal velocity component and r up to R N 4 x 107. The results show that the 
transition from a viscous regime to a turbulent one is very diffuse in the sense of 
the dependence of U and 7 on the external parameters ($$ 3 and 4 ) .  

Next, a regime of developed turbulent convection is considered by a scaling analysis 
of the convection equations together with the available experimental results on 
velocity measurements. It is shown that for very large R the rate of growth of N with 
R may be slowed down and suggests a possible asymptotic regime as N - R* ( $ 5 ) .  

The remaining sections (6-8) are devoted to a study of convection in a fluid layer 
where a separation into heavy and lighter fractions occurs, to the application of the 
results obtained to some problems of oceanography, to the motions of lithospheric 
plates and to discussion (and classification) of some general properties of various 
forced motions. Portions of these results have been described in short notes (Golitsyn 
1977a, b,  1978) but here a full and concise discussion of the theory and experiments 
is presented which is more general and complete than that reported previously. 
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Convection of incompressible viscous A uid is described by the Boussinesq equations 
which are 

and 

v . u  = 0, (1.2) 
- + ( u . V ) T  aT = k A T + - ( q + s ) ,  1 

CP at 

where u is velocity, p pressure, p density, a thermal expansion coefficient, 2” deviation 
of temperature from its equilibrium distribution in the absence of motions, g gravi- 
tational acceleration. For simplicity the kinematic viscosity v and thermal conduc- 
tivitykareassumed constant. In  theenergyequation (1.3)qistherate ofheatproduction 
by thermal sources per unit mass within the fluid and the rate of dissipative heating 

Non-slip boundary conditions for the velocity must be added; for the plane hori- 
zontal layer the conditions for temperature are 

and 
pc,k(aTlaz) = - f  at z = 0, say, 

T = To at z = d, say, 

where d is the height of the layer, f the heat flux, cp the specific heat at  constant 
pressure. Sometimes, instead of (1.1)-( 1 3) the equation system will be written for 
the vorticity w = V x u and the enthalpy referred to the temperature To 

e = cp (T - To). 

dw/dt - (0. V)u = -H-lVe x n + YAO, 

deldt = kAe + q + s. 

(1.7) 

(1.8) 

(1.9) 

kae/az = - f / p  at z = 0,  (1.10) 

Then instead of equations (1.1)-( 1.3) we shall then have 

The boundary conditions will also be somewhat simplified : 

e = O  at z = d .  
In  equation (1 3) n = g/g and 

H = c,/ag, (1.11) 

a quantitywith the dimension of length which may be considered as a character- 
istic depth of a fluid layer stratified by gravity. For air a = l/T and H = cp T/g = 
T / y ,  and for T = 288K and ya = 9-8Kkm-1 we have H = 32km. For water at  t = 
20 “C, a = 2 x 10-4K-1, cp = 4.2 x 10s J kg-1K-l and H = 2000 km. For the Earth’s 
upper mantle after McKenzie, Roberts & Weiss (1974), a = 2 x lO-SK-l, cp = 1.2 x lo3 
J kg-1 K-1, and H = 6000 km. As is shown in particular by Hewitt, McKenzie & Weins 
(1975) the Boussinesq approximation is valid for d Q H .  
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2. Energetics of convection 
A preliminary analysis of the energy balance for convection in a horizontal layer 

has been carried out by Lipps (1976). Here we generalize his results for the case of an 
arbitrary distribution of heat sources within the layer which can be useful for geo- 
physical applications and continue his analysis. Take the scalar product of (1.1) with 
u, average it horizontally for an infinite plane layer, and integrate in height from 0 
to d. The resulting energy balance equation is 

where 

is the kinetic energy of a unit column and angular brackets denote horizontal aver- 
aging, so that 

G = apgJod (wT') dz (2.3) 

is the rate of generation of kinetic energy from potential energy of the fluid, and 

(2.4) 

is the rate of dissipation of kinetic energy of convective motion owing to viscosity. 
In  a steady state dK/dt  = 0 and 

(2.5) = D ,  

Let fi be the heat flux introduced into the layer at  the lower boundary. If there 
are heat sources inside the layer with intensity q ( z ) ,  the total heat flux at  the level 
z is on average equal to 

On the other hand the total mean heat flux in a steady state is (see, e.g. Kraichnan 

f(z) = pep( - k(dT/dz)  -t (wT')). (2.7) 
1962) 

Equating the right-hand sides of these two expressions and integrating in height 
from 0 to d,  then taking into account (2.3) and (I .  10) one obtains 

f d + p 1 dz 1 ' q(z' ) dz' = pcP kAT + HG,  
0 0  

where AT = TI - To the temperature difference between the lower and upper bound- 
aries. From here, after some manipulations, one may derive an expression for the 
convection efficiency in transforming the heat power supplied to the layer into the 
rate of generation of kinetic energy 

where the modified Nusselt number is specified by 

(2.10) 
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The case p(z) = q = const. has been considered in detail for the upper mantle in 
numerical experiments by McKenzie et al. (1974) and Hewitt et al. (1975). In this case, 
equation (2.10) simplifies to 

(2.11) 

P = Pqd/(f, + Pf3d). (2.12) 

The parameter p is the ratio of the heat power generated within the layer to the 
total heat power supplied to the layer (per unit column). When P= 1 all heat is gener- 
ated within the fluid, while when p = 0 the heat is introduced only from below and 
instead of (2.11) or (2.10) we have the usual Nusselt number 

N = fd/pc,kAT. (2.13) 

For q = 0 we have from (2.8) and (2.13) 

G = agpkAT(N- 1) .  (2.14) 

This result (in a non-dimensional form) has been obtained by Lipps (1976). 
For large Nusselt numbers, N 9 1, it follows from (2.9) that 

This expression for the limiting efficiency of convection was, evidently, first obtained 
by Lliboutry ( 1  972) from a consideration of the energy transformations in convection. 
It has been also obtained by Hewitt et al. (1975) from an analysis of the energy and 
entropy balance (these authors apparently .did not know the Lliboutry paper). With 
insignificant corrections the last derivation has been reproduced by this author 
(Golitsyn 1977b, who was at the time also unaware of Lliboutry’s work). We see that 
this last formula is valid only asymptotically when N, 

Our formula is exact by its derivation for a horizontal plane fluid layer for any 
type of convection in it. The only approximation is the Boussinesq one, from which it 
follows that i t  is valid when yo < 1 .  At first glance this is not of great importance 
because i t  contains the Nusselt number which has to be determined separately. But 
the behaviour of N with Rayleigh and Prandtl numbers is now known reasonably 
well; besides, in $ 3  we present a simplified theory which will give the dependence 
N ( R )  for a broad range of R. One should also remember that the efficiency becomes 
practically independent of N rather quickly with increasing R. In  any case the formula 
(2.9) or its simplified versions for q = 0 may be used as a simple and efficient check of 
numerical or laboratory experiments on convection which we shall discuss now. 
Unfortunately not many papers on the experiments have all the necessary infor- 
mation for such a check but I was able to find two papers with computational results 
and one with suitable laboratory data. 

The first was the paper by Hewitt et al. (1975) where results were presented of 
computations of the total kinetic energy dissipation rate for a fluid with parameters 
appropriate to the upper mantle in a square cell with size d = 700 km for B = 0, 4 
and 1 [see equation (2.12)] and for a rather wide range of Rayleigh numbers. In  a 
steady state the dissipation is equal to the generation, so that their results may be 

1.  
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FIGURE 1. Results of computations of the convection efficiency y by Hewitt et at. (1976). 
, -- -, the limiting values of y = yo = d / H ;  -, calculation using equation (2.9). 

compared with (2.9) taking into account (2.11). In  figure 1 the dependence of y is 
shown as a function of the logarithm of the ratio of the flux Rayleigh number 

R, = Wfd "/c, L2pv (2.15) 

to the critical Rayleigh number Rfcr. Horizontal lines are asymptotic values of 
y = yo = ( d / H )  (1 - ip) at d /H = 700/6000 = 0.117. Full circles, triangles and squares 
are the results of numerical computations. This part of the figure reproduces figure 3 of 
Hewitt et al. (1975). The thick curves are calculated using (2.9) and (2.11) and the 
dependence 

N, = 1.6 (R,/Rp)& (2-16) 

obtained by McKenzie et al. (1974) in similar computations. One should note, however, 
that the dependence (2.16) is presented there only for the case p = 0. Nevertheless the 
qualitative and quantitative agreement between (2.9) and numerical results is good. 
A small systematic lowering of the theoretical dots compared with the numerical ones 
can be probably understood as a result of a slight overestimate of the integral dis- 
sipation in the computations owing to side boundaries and/or computational viscosity 
or some non-stationarity of convection at  very large Prandtl numbers (McKenzie et 
al. 1974). Nevertheless, it is interesting to note that the last circle a t  the upper right 
of figure 1 is practically on the line yo = 0.117. 

Of all the numerical experiments, the generation of kinetic energy has been cal- 
culated directly only by Lipps (1976) for three-dimensional convection in air ( P  = 0.7) 
a t  several values of the Rayleigh numbers up to R = 25000. Because he used non- 
dimensional equations it is not possible to extract directly from his results the values 
of y. However one may check equation (2.14), which in the usual non-dimensional 
variables (velocity scaled by k / d ,  time by d2/k)  is [see Lipps (1976), equation (8)] 

G' = PR(N - 1). (2.14') 

Lipps does not himself present the results of a numerical check of this relation. On 
figure 13 of his paper there are averaged profiles of specific (per unit volume) generation 
of kinetic energy G' with height for R = 4000, 9000 and 25000. Their graphical 
integration over vertical gives G'. Substitution of these values found for G' into (2.147, 
together with corresponding values of R and I?, shows that this relation is satisfied 
within an accuracy of a few per cent. This small discrepancy is evidently connected 
with the errors of graphical integration at the coarse scale of figure 13. That this is the 
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d (cm) 10 12 18 

R 6.3 x lo6 2.6 x 10" i x 107 
T ("C) 9.6 21.6 26.8 

N 6.7 9 14 
c f  ' 2.6 x 10' 16 x lo8 88 x 10' 
Y 2.8 x 104 3.6 x 5.8 x loe8 

YWI 2.6 x 10-6 3.8 x lo-" 6-2 x 1 0 4  

TABLE 1. Experimental results by Deardorff & Willis (1967) and 
comparison between theoretical and experimental values of y. 

- 

case may be shown by using his table 2 where he presents computed values of all 
quantities entering (2.14') for R = 6500 for two runs, F and F1 in his notation. For 
the case F he gives Gkomp = 4910 a t  N = 2.08 and (2.14') gives 4914. For the case F1, 
Gcomp = 4780 a t  N = 2-05 and (2.14') gives 4778. The difference is evidently due to 
rounding off errors. 

Direct determinations of the rate of kinetic energy generation has been performed 
from laboratory measurements only by Deardorff & Willis (1967) who present a very 
large number of measured properties of convective motions. They studied convection 
in the air at  a mean temperature of 20 "C and at  pressures slightly less than atmospheric. 
Their results allow the possibility of determining the efficiencies of convection y and 
of comparison with those calculated from equation (2.9). 

In  table 1 some parameters of their apparatus are presented together with the 
experimental results needed here, the values of F calculated from (2.9) and values 
yexp calculated from measured values of -@. The measured values of F are presented 
in non-dimensional form. They normalized it by k3/d4 because the velocities were 
normalized by k / d  and temperature by AT. The height-averaged generation -@ can 
be calculated using profiles of specific generation (per unit volume) presented in their 
figures 17-19. The total dimensional value of the generation in unit air column is equal 
to 

G = pFk3d-3; 

the heat flux f can be calculated from (2.13) since the Nusselt number is known 
together with other necessary parameters. As a result 

ye,,, = G'lc2/Nd2Cp AT. 

The value of the thermal diffusivity in these experiments was equal to 0.263 cm2 s-l. 
As one sees in table 1 the value of yeXp and the theoretical y agree with an accuracy of 
better than 10%. One should note that the accuracy of measurements of the heat flux 
and some other parameters in these experiments estimated by the authors was itself 
about lo%, and the agreement between the two sets of y should be considered 
excellent. 

It is interesting to study the behaviour of the efficiency y on the Rayleigh number 

R = agATd3/kv (2.17) 

near its critical value. For this one should know the dependence N ( R )  in this region. 
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Note that the usual Rayleigh number R is connected with the Rayleigh flux number 
according to the definitions (2.13), (2.15) and (2.17): 

Rf = NR. (2.18) 

A very detailed study of the dependence N(R) near R,, has been carried out by 
Schluter, Lortz & Busse (1965) the results of which were later checked numerically 
by Clever & Busse (1974). For roll convection with upper and lower rigid boundaries 
of the layer Schluter et al. found the following relationship: 

R(N - 1)/(R - Rcr) = (0.69942 - 0-00472P-1 + 0.00832P-2)-1, (2.19) 

and for hexagonal cells 

R(N- I ) / (R  - Rc,) = (0.89360 + 0.04959P-1 + 0*06787P-2)-1. (2.20) 

Here P = v/k is the Prandtl number. When P is not very small the dependence on it 
is weak and both formulas can be represented approximately as 

N -  1 = b ( l  -R,,/R) = b(1 - r - l ) ,  (2.21) 

where r = RIR,,, b = 1.43 for straight horizontal rolls and b = 1-12 for hexagons. The 
structure of the relationship (2.21) was confirmed for r 5 3 by rather precise measure- 
ments by Koschmieder & Pallas (1974) who studied heat transfer by convective 
concentric rolls in a cylindrical cavity, in which they found b = 1-48. The dependence 
of the type (2.21) can be also obtained from two-dimensional calculations by Veronis 
(1966) for r 5 2, though the value of b is found to be close to 2 which possibly can be 
explained by the free surface boundary conditions. 

Using (2.21), equation (2.9) can be written as 

y = ( d / H )  (r - 1) [( 1 + b-l) r - 11-1 

so that for a supercritical but not large Rayleigh number, the efficiency of the con- 
vection is a simple rational function of the Rayleigh number. Finally, if R - R,r 4 Rcr 
it  follows from (2.21) that 

and the efficiency is a linear function of AR = R - Re,. 

experiments we know that for a plane horizontal layer for large R 

y = ( d / H ) b ( r -  11, (2.22) 

From numerous measurements (Jakob 1949; Kutateladze 1970) and numerical 

N = P ~ R +  (2.23) 

where P1 = 0.1-0.2 depending on the type of the boundary conditions. We see that 
the convection efficiency is a monotonic function of the Rayleigh number approaching, 
rather slowly with R, a constant determined by the gravitational acceleration, the 
depth of the layer and the physical parameters of the fluid a and cp. 

Since an essential part of the dependence of the efficiency on the external parameters 
is the multiplier 1-N-1, we present its behaviour with R according to various 
computations and measurements on figure 2. The triangles represent computations 
by Lipps & Somerville (1971) at P = 200, circles are calculated by Lipps’ (1976) data 
(P = 0.7) and vertical series of two small dots and a line are due to Clever & Busse 
(1974) at P = 7 for three different aspect ratios. The full curve is drawn by hand as a 
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FIGURE 2. Dependence of 1 - N-1 on R according to data of various authors (see text). 
:, CB, P = 7; A, LS, P = 200; 0 ,  L , p  = 0.7. ---, ( l -N- ' ) -* ;  - * - ,  P = 0.085. 

mean of all these data and the dashed curve (1 - N-l)$ correspond to it. The latter is 
important for estimates of velocity and time scales (see 0 3). 

For small Prandtl numbers one may expect that the curves 1 - N-l will be lower. 
For instance, for the turbulent convection regime at  P < I ,  Kraichnan (1962) predicts 
that N(R,  P) x O.t7(PR)* while for P 2 1 he obtains N = 0-09R+, independent of P. 
The experiments by Rossby (1969) with mercury (P = 0.025) agree with the idea of a 
substantial decrease of N with P for the same R. Using his results the lower dash- 
dotted curve was calculated. 

The structure of the expression for the efficiency is general for domains of rather 
arbitrary forms. The general expression for the total kinetic energy generation rate in 
the volume V is (Hewitt et aE. 1975; Golitsyn 1977b) 

For convection where only the vertical scale of the domain is not large compared 
with the horizontal one and the form of the domain is not too intricate, 

(2.24) 

Implicit in this statement is the approximation that the vertical pressure gradients 
are large compared with horizontal ones which means that the fluid is not too far from 
hydrostatic equilibrium. Then taking into account (t-10) and the constancy of a, g 
and cp - the usual convection approximation - we get 

I P  C z Z J  1 pc,wT'dV. 
V 

(2.26) 

The total heat flux into the domain is 
P 

(2.26) 
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where fi = - pcp kaT/axi,  dSi is the oriented element of the surface S bounding the 
volume in question. Then define the convective efficiency in the volume using 
(2.24)-( 2.26) as 

G 1  

f H  

In  the case of a plane layer, with the aid of (2.8) and (2.10), we can obtain the earlier 
expression, (2.9). In  the general case it is evident that 

Y = ( d / H ) f  ( N )  = (~ /H) f , (R ,P) ,  (2.27) 

where f and fi are limited functions of their arguments and d is a characteristic vertical 
scale of the domain (with, of course, the proviso that y should be much less than unity 
for the Boussinesq approximation). 

To illustrate this statement we present an estimate of the convection efficiency in a 
rotating fluid annulus with the external wall warmer than the internal one (Golitsyn 
1977b), 

y w ( d / H )  Pe/2naN, 

where P e  is the Peclet number, a function in this case of the Nusselt, Taylor and 
thermal Rossby numbers. This approximate expression gives results which agree 
rather well with data of detailed computations by Williams (1971) of the regime when 
baroclinic waves are observed in an annulus. 

A number of exact self-similar solutions are known for convection in infinite space. 
These include the Polhausen problem of convection near a vertical heated wall, 
problems by Zel’dovich on laminar and turbulent convective plumes and some others 
(see Landau & Lifshits 1954, Q 56 with problems; Monin & Yaglom 1965, Q 5.9). The 
characteristic vertical scale of the domain is absent in these problems and therefore 
expressions for the total generation of kinetic energy are formally divergent at 
infinity. In  any event, the Boussinesq equations are applicable only for a fluid of finite 
vertical extent. In such cases one should use the full hydrodynamical equations or, 
a t  least, the deep convection approximation where in the continuity equation the 
term wdInp,/dz is preserved, where po(z) is the mean density of the medium. This 
gives a scale height Ho = dz/d lnp,. A realistic consideration is usually complicated 
by the non-stationarity of deep convection phenomena. 

Let us consider now the dissipation of kinetic energy in convection. In a steady 
state, from (2.5) the average generation of kinetic energy is equal to the average 
dissipation. Therefore, the mean total dissipation 

E = y F ,  

where F is the total heat flux introduced into fluid. For simplicity we further consider 
convection in a plane horizontal layer, where for a unit mass we have on average 

= E / p d  = yf/pd, (2.28) 

and taking into account (2.9) at q = 0 we obtain 

(2.29) 

For sufficiently large Nusselt numbers i t  follows from this that the specific dis- 
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sipation does not depend on the layer depth or on the Rayleigh or Prandtl numbers but 
is determined only by the heat flux, gravity, and the properties of the fluid: 

e M f l p H  = agflpc, = qf’, (2.30) 

where f ‘  is the kinematic heat flux. In any case this estimate can be always used as 
an upper limit. Modifications of equations (2.29) and (2.30) are evident in the presence 
of the volume heat sources. 

For a perfect gas a = l /T  and then (2.30) becomes 

E = ( g / T ) f  ’. (2.30’) 

This formula has been obtained by Oboukhov (1960) from similarity and dimensional 
arguments while considering the convective regime in the atmospheric surface layer. 
We see that it is valid for large Rayleigh numbers such that N $ 1. 

3. Estimates of r.m.s. velocities and time scale of convection; regimes 
of heat transfer 

A knowledge of the convection efficiency in the transformation of the rate of heat 
supplied to the rate of generation or dissipation of kinetic energy in a steady state 
allows one to estimate the mean (r.m.s.) velocities of convective motions. This can be 
done when a characteristic scale of the motion is known and when the viscosity still 
plays a role at this scale. An exact specification of these conditions I have not been 
able to define but the experiments described in 3 5 show the limits of this ‘viscous’ 
regime. 

Let us suppose that in the expression (1.4) for the specific dissipation all the deriva- 
tives are of the same order. In the plane case this is so if all the stream function isolines 
have roughly the shape of more or less concentric circles approximately equally spaced 
within each other (see e.g. McKenzie et al. 1974). Approximate av,/ax, by 2 U l d  where 
U is the velocity scale sought and +d the radius of a ‘circle’. In the two-dimensional 
case or for roll convection there are eight terms in the sum (1.4), so that E z 32vU2/d2. 
Taking into account (2.29) we obtain therefore that 

f ”) d, 
32pH N 

wherep = pv the dynamic viscosity. In  the essentially three-dimensional case there are 
eighteen terms in (1.4) and with the same approximations for the derivatives we 
obtain in the denominator of (3.1), 72 instead of 32. Equation (3.1) becomes slightly 
more convenient if it is rewritten not for the total mean velocity U but for vertical 
or horizontal components of the velocity assuming that they are of the same order of 
magnitude. Then U = (U2+G2)4 M 24% M 24E and one obtains from (3.1), 

where a z 8 or 12 depending on the two- or three-dimensionality of the convection. 
Of course this estimate is quite rough but one can expect the value of a to be appreciably 
more than unity, and more in the three-dimensional case than in the two-dimensional 
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one. In  $ 4 the value of a is determined from results of several numerical and special 
laboratory experiments; the results show that our crude estimate is indeed not far 
from reality. 

The dependence U2 M (2slav) d2 is quite similar in its structure to the formula for 
the mean-square relative velocity of fluid particles in a fully developed turbulent 
flow separated by a distance d less than Kolmogorov's microscale 

7 = (V3/€)' .  (3.3) 

In  the Kolmogorov (1941) theory there are exact formulas for the longitudinal and 
lateral structure functions (mean squares of velocity component differences taken a t  
two points separated by the distance d): 

D,(d) = 2D,,(d)= (2e/15v)d2. (3.4) 

The difference between expressions (3.1) and (3.4) occurs only in the numerical factors, 
and, indeed, such a structure for expressions of mean velocities is common to all 
forced flows when viscosity is essential. Another example of such a flow will be given 
in $ 6  and a discussion of some general properties of forced flows is given in 5 8. 

When a convective regime is slightly supercritical so that (R/Rcr) - 1 = r - 1 < 1, 
then from (2.22) we have 

and using (3.2) we estimate the velocity scale as 

1-N-1 = b(r-1) 

which implies that U N (R  - R,,)H. This fact has been used many times in theoretical 
studies of convection a t  moderately supercritical Rayleigh numbers. Equation (2.21) 
holds when r 5 2 and ii is a fractionally-rational function of R. For sufficiently large 
R when N > 1, equation (3.2) simplifies and 

With the velocity scale, one may find the time scale of convective motions r = d/S, 
a turn-over time. Prom (3.2) one obtains 

For slightly supercritical convective regime rcc ( r  - l)+ and when N & 1, 

7 = a(Pcp1olsf )* = a C u / f W .  ( 3 4  

This displays the rather fundamental fact that the convection time scale does not 
depend on the depth for developed convection when N is large. Further, since 
[ N / ( N  - 1)]* depends rather weakly on R and therefore on d (see figure 2), this state- 
ment is approximately true for all RIRcr > 5 ,  say. This fact has not yet received 
proper attention though for large R it apparently has been contained in papers by 
Howard (1966), McKenzie et al. (1974) and a formula of the structure (3.8) has been 
obtained by Foster (1971) by treating the results of numerical experiments. 
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Estimates of the velocities (3.2) and times (3.7) in terms of Rayleigh numbers R, 
and R are also useful. Using the definitions (2.15) and (2.17), together with (2.22), we 
obtain 

and (3.10) 

Since the value of (1 - N-l)4 becomes comparable with unity rather quickly as R 
increases (if the Prandtl number is not too small) - see the dashed line on figure 2 - then 
the velocity scale (3.6) should be a good estimate of the velocity scale over a rather 
broad range of values of the external parameters. 

The energy equation (1.3) in a state that is stationary in mean allows one to deter- 
mine a temperature scale, ST, if the equation is represented as an approximate balance 
between advection of temperature a.nd heat flux divergence 

Approximating aT/ax, as ST/d and af/axi as f / d  one obtains for this scale, 

(3.11) 

(3.12) 

Since the thermal-conductivity does not enter here, it  appears that this scale corre- 
sponds to the temperature change outside of thermal boundary layers. 

Let us non-dimensionalize equations (1.8) and (1.9) choosing the length scale as 
d but not yet making a specific choice for the velocity and temperature scales Uo and 
To. Then we obtain 

Re [dwldt - (w . V) v] = - CVT x n + Am, n = gfq ,  (3.13) 

dT/dt = Pe-IAT + M q  + yo E (3.14) 

with boundary conditions on temperature at  z = 0 :  aT/az = -MPe (or T = Tl/To) 
and T = 0 a t  z = 1.  Here and in (3.13)-(3.14) non-dimensional variables are denoted 
as they were previously (and later) by the dimensional ones. In this system there are 
5 similarity parameters: the Reynolds number 

Re = Uod/v ,  (3.15) 

C = aTogd2/vUo; 

Pe = Uod/k = Re P ,  
the Phclet number, 

and a measure of the thermal inertia (see Golitsyn 1970, 1973, 1 9 7 7 ~ )  

(3.16) 

(3.17) 

M = f / P C P  To -4 = f T O / L  (3.18) 

where T,, = d/Uo, I = pdcpT the enthalpy of a unit fluid column. In the absence of 
heat sources and neglecting for a moment the dissipation, the temperature equation 
(3.14) is uniform relative to the choice of the scale To. If Pe B 1 a thermal boundary 
layer arises with thickness 

S - Pe-*d, (3.19) 
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but in the bulk of the fluid the temperature changes are small. From the continuity 
of the heat flux in the boundary layer and in the bulk it follows that f M khT/26, 
where BAT is a change of temperature a t  one boundary (the case of a free upper 
boundary needs some elaboration and will be partially considered later). From here, 
(3.19) and (2.15) we obtain 

N - &Pet. (3.20) 

This almost trivial result (of little use in the absence of velocity estimates) we shall 
exploit extensively. Up to now we have not yet specified the choice of U,. For a study 
of a viscous convection regime it is natural to take U, as the velocity scale ;il in the 
form (3.9). Then from (3.17) and (3.20) arelation follows betweenNusselt and Rayleigh 
numbers: 

N - +a-i[R(N- l)]t. (3.21) 

For moderately supercritical Rayleigh numbers when (2.21) holds we get from here 

N N &-*(R- Rcr)*. (3.22) 

Let us check whether the small parameter, the inverse P6clet number is really small. 
For R = 2Rcr = 2 x 1708 (rigid boundaries), b M 1-5 in (2.21) and a M 9 (see 4) we 
get Pe-l = a[R(N - 1)]-+ = 0.18. Therefore at twice the supercritical Rayleigh number 
one can expect an appreciable thermal boundary layer. This is confirmed by numerical 
experiments (see, e.g. Veronis 1966; Clever & Busse 1974). The dependence (3.22) is 
just an approximation of the relationship (2.21) showing that N is, also approximately, 
a simple rational function of R. 

A limiting case is when N is large, more precisely, ( N  - 1)a M Ni for which one 
needs )N < 1.  Then from (3.21) we obtain immediately that 

N N 2-*a-%R). (3.23) 

Both heat transfer relationships, (3.22) and t3.231, are well known from experiments 
(Jakob 1949; Kutateladze 1970). It is true that the first one is usually presented in the 
form N - Rt but, because of the smallness of the exponent, the valueof (R-Rc,)t 
is close to Ra. If, to the author’s knowledge, the first regime has not yet been explained 
theoretically, the second regime has been obtained by many workers (see, e.g. 
Kraichnan 1962; Herring 1966; Thompson 1967). We present it solely to show that it 
also is contained in this simple approach which is free from some assumptions made 
heretofore. Another reason is that the numerical coefficient in (3.23) is surprisingly 
close to its experimental value. The empirical relationship of the type (3.23) is usually 
written as N = Bl Ra, where F1 = 0.1-0-2 depending on the type of the boundary 
conditions. For instance a t  both rigid walls of a plane fluid layer p1 = 0.13. We have 
the factor 24 a-* which is about 0-1 when a M 9 and about 0.08 when a M 12. Anyway 
the derivation shows that the coefficient can be an order of magnitude less than unity. 

We see that the relationship (3.21) describes qualitatively and, to some extent, 
quantitatively the dependence N = N(R) for R 2 2Rcr at Prandtl numbers that are 
not very small (otherwise equation (2.21) is not valid). For small P, i.e. for large 
thermal diffusivity, the Pbclet number can remain small with increase of R, the thermal 
boundary layer is not pronounced and our considerations are hardly justified. 

Of course, the Nusselt number depends also upon the horizontal scales of the 
convective cells but this dependence is rather weak and reveals itself mainly in a 
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slight change of the intensity of the N(R) curves without changing their shapes (see, 
e.g. Clever & Busse 1974, and their points on figure 2). To check this statement the 
relationship (3.21) was converted into an equality in such a way that it would give 
asymptotically N = 0-13R4, and the dependence N(R) was calculated from it. The 
curve obtained was compared with similar curves of figure 10 by Willis, Deardorff & 
Somerville (1  972) and it was found to lie approximately in the middIe between the 
experimental points for variable non-dimensional perturbation wavelength A and the 
computed curve at  A = 2 for the Rayleigh number range 6000-20000. One may there- 
fore consider equations (3.21)-(3.23) as simple and more or less accurate estimates 
of the dependence of heat transfer on the Rayleigh number. 

The asymptotic heat transfer regime Ncc R) begins rather quickly, a t  least in 
numerical experiments, such as the computations by McKenzie et al. (1974) where it 
already held for R/RCr 2 6. It begins early in other experiments (see Herring 1963, 
1964; Veronis 1966; Ljpps & Somerville 1971). We have already noted that because 
(1  - N-l)+ quickly approaches unity the velocity scale (3.9) should be a good estimate 
for convection and then one may obtain (3.23) immediately from (3.20). 

It follows from (3.17) that at  the large Prandtl numbers characteristic of the Earth’s 
mantle (P - loz3), the Reynolds number Re = Pe/P is small and nonlinear terms in 
(3.13) are insignificant. We have not yet specified the temperature scale To. Let us 
choose it in the form (3.12). Then the similarity criterion C = 1 in (3.16) and (3.13) 
will not depend on any criteria. With To as in (3.12) the similarity criterion M = 1 
again applies and yo = d / H .  Accordingly, in the absence of internal heat sources and 
for P e  > 1 the system (3.13)-(3.14) has no similarity parameters except P e  in (3.14), 
and outside thermal boundary layers for P e  > 1 the system becomes self-similar. For 
4N 9 1 it follows from (3.17) and (3.9) that 

P e  = Rf*. (3.24) 

This self-similarity of convection for large P has an important consequence for 
laboratory modelling of mantle convection if one is not interested in the detailed 
structure of thermal boundary layers. The model flow must fulfil only the require- 
ments Re = R i  P-l< 1, y < 1,  R$ > 1 which are not too severe. An exact corre- 
spondence between the model and reality should be only for the boundary condition 
aT/& = - MPe = - R$, with our scaling. One may check that the laboratory experi- 
ments by Booker (1976) are close to fulfilling these requirements. 

A t  the end of this section we consider briefly the connexion between our results 
and those already known, and also some other useful consequences. At large Nusslet 
numbers (4N 9 1) when the regime (3.23) is valid we have from (3.9) and (3.10): 

(3.25) 

(3.26) 

The second of the formulas (3.25) has been apparently first obtained by Turcotte & 
Oxburgh (1967) and the first one by McKenzie et al. (1974). The latter authors have 
also derived the first formula (3.26) and the second one is in the paper by Howard 
(1966). All these authors have derived their results by considering the balance of 
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energy and vorticity but without the numerical coefficients a or 
from unity by an order of magnitude. 

which both differ 

Similarly one may express the temperature scale (3.12) as 

(3.27) 

For AT = Ra we obtain from here that the temperature difference in the bulk of 
fluid outside the thermal boundary layers referred to the total temperature difference is 

(3.28) 

This shows again that the bulk of the fluid tends to isothermy with increase of the 
Rayleigh number and, in addition, shows the rate at which this takes place. 

We also present several formulas which will be used later, valid in the regime 
N - R*. The thickness of the thermal boundary layer S is defined in such a way that 

f = pcP kAT126. (3.29) 

Comparing this expression with the definition of the Nusselt number (2.13) one gets 
N = d /26 ,  from which, accounting for (3.23) and (2.22)) it  follows that 

s = (a/zp,) R-* = (a/2pf) R$ = (pkz~/i6p:~gf)k (3.30) 

If on a boundary the heat flux is prescribed but the temperature drop throughout 
boundary layer is not known it can be determined from (3.29) and (3.30) as 

(3.31) 

This expression describes, for instance, the temperature drop in a cold film of fluid 
cooling from the surface, when convection is due to instability of this film. The 
measurements by Katsaros et al. (1977) and Ginzburg, Zatsepin & Fedorov (1977) 
confirm well this expression. 

Let us note that the scales of velocity (3.61, time (3.8) and temperature (3.12) can 
be also obtained in several other ways, each of which has, however, some limitations. 
For instance at  Re < 1 and Pe = Re P 1 these scales can be immediately derived 
from a scaling analysis of the equation system (1.8), (l.Q), but without estimates of 
the numerical coefficients. In  the appendix another derivation is presented using 
similarity and dimensional arguments which seem to be somewhat non-trivial and 
require some use of elementary group theory. It is evident that these scales should 
depend on the type of boundary conditions, the aspect ratio of the domain and on the 
distribution of internal heat sources, e.g. on the parameter p defined by (2.12). 

4. Comparison with numerical and real experiments 
Because of difficulties in measuring the velocity and temperature fields, many 

experimenters limit themselves to a quantitative exploration of only the dependence 
N ( R ,  P ) .  Some exceptions are the works of Malkus (1954), Deardorff & Willis (1967) 
and Garron & Goldstein (1973) of which the author became aware only after writing 
the third draft of this paper. These papers will be discussed in Q 5 because their material 



Theoretical and experimental study of convection 883 

relates more to the turbulent convection regime. Unfortunately, because of the same 
lack of experimental evidence, authors of numerical papers pay most attention to 
checking the same dependence and to determining the mean temperature profile but 
data on the velocity field and its mean characteristics are rare. Some data on the 
velocities do exist in the paper by McKenzie et al. (1974) which, incidentally, gave an 
impetus to the studies reported here. They describe an extensive series of experiments 
on numerical modelling of convection in the Earth’s upper mantle, in which they 
varied the heat flux valuefover the range to 0.1 W m--2 (we recalI that the mean 
geothermal flux is about 0.06 Wm-2). Equations (56)) (61) and (62) by McKenzie 
et a l  (1974) present the foIIowing computed dependences of the maximum values of 
horizontal velocity 42 at the upper boundary: 

i 
I 

p = 0, log a = 0.5010g f+ 1.91; 

p = a, log a = 0.4910g f + 1.80; 

p = 1, log a = 0.5410g f+ 1.85. 

We recall that, in virtue of (2.12)) the upper line corresponds to the heat flux supplied 
only from below and the lower line, only from within. Here a is measured in mm yr-1, 
the density of the medium is 3.7tm-3, and v = 2 x 1017m2s-1. Taking into account 
(2.11) and d / H  = 0.1 17 our formula (3.1) can be transformed for these same values of 
the parameters into 

log = 0.5 log f + 1.61 + 0.5 log (1  - 8p). ( 4 4  

Since equation (4.1) describes maximum velocities, while (4.2) represents the mean 
velocities, it  appears that our result is valid not only in the sense of the dependence 
on the main external parameters, but also in determining the order of magnitude of 
the numerical coefficient a z 8 over a wide range of variation of the heat power 
introduced into the system. 

A dependence of the type (4.1) may be also obtained using data of numerical 
experiments by Houston & DeBremaecker (1975) in their constant viscosity con- 
vection case. Their parameters were: v = 5 x i0l7 m2s-1, p = 3.5 t 112-3 and 

f = 5.94 x 10-2W m-2, /3 = 0.79. 

Under these conditions, their .iz = 16 mm yr-1. A substitution of these values into (3.2) 
allows one to determine the value of the last term in a formula like (4.1)) leading to 

log = 0.5 log f +  1.52. 

The difference in the last term is due mainly to the larger viscosity; two kinds of 
numerical experiments and our equation (3.2) are in satisfactory accord, at  least for 
Re< 1.  

In  some papers on numerical experiments one can find occasional values of the 
velocities or mean kinetic energy of convection K together with Nusselt numbers. 
These quantities can be used to find the numerical coefficient a using the following 
expressions derived from (3.9): 

a = W 1 [ R ( N  - I)]*, or a = [R(N - 1)/K]*. (4.3) 

If the present approach has any value, the magnitudes of a should be constant or 
should, at most, vary little. 
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P 
P 1 

R 0.2 1 7 
3000 9.04 8.86 8.79 
5000 9.25 8.92 8-84 

TABLE 2. The results calculated from Clever & Busse’s (1974) data. 

Veronis ( 1966) considered two-dimensional convection by Galerkin’s method. He 
presented only two values of the magnitude of the vertical velocity: w = 31.1 at 
P = 6.8 and w = 32.3 at P = 0.005 for R = 20R,,. He considered the case with both 
boundaries free and therefore his R,, = 658. The corresponding Nusselt numbers are 
5.33 and 5.676. Substitution of these values into the first formula (4.3) gives a = 7.68 
for both Prandtl numbers (the difference is in the fourth decimal), though the Prandtl 
numbers themselves differ by three order of magnitude. 

Clever & Busse (1974) also studied two-dimensional convection by Galerkin’s 
method, but for rigid boundaries. Using the results of their computations presented 
graphically in their figure 4 as K ( P )  and N ( P )  for 0.2 < P < 7 for two Rayleighnumbers 
R = 3000 and 5000, one may calculate the values of a according to the second formula 
(4.3). These results are presented in table 2. There is the suggestion of a very weak 
increase, of the order of a percent or less, of the value a with decrease of the Prandtl 
number and with increase of the Rayleigh number. The estimates given here can 
hardly pretend to be valid with this accuracy, and in addition, some small inaccuracies 
are also due to the values of K and N taken from the graphs. It seems justified therefore 
to average the results of this table, presenting them as a = 8.95 rf: 0.17 (standard 
deviation) or, rounding, a = 9.0 & 0.2. 

Very recently, Dr F. H. Busse kindly supplied me with the results of his com- 
putations (in press) on the dependences of the mean kinetic energy and the Nusselt 
number on the wavenumber CL of the convection cells, under conditions with both 
boundaries free, R = 20000 and Prandtl number infinite. Busse’s curves for N ( a )  and 
K(a) ,  together with (4.3) yield values of a from 4.55 to 4.98, varying almost linearly 
with a over the range 2.4 < CL < 4.1. This implies that the mean convection velocities 
increase slightly with increase of the wavelength of convection, as is consistent with 
the comments in the appendix of this paper. 

The work of Lipps (1976) was found to be most valuable. In  his paper, he presents 
his mean values of K in tables. He integrated the complete hydrodynamical equations 
for air ( P  = 0.7) for six three-dimensional cases over the range of Rayleigh numbers 
from 4000 to 25 000 and also for two two-dimensional cases. When R < 9000 the con- 
vection with rigid boundaries organized itself in regular two-dimensional horizontal 
rolls, but for R = 25000, a regular space-time structure was not observed. All eight 
cases allow one to calculate values of a, using (4.3). The results of such calculations are 
presented in table 3, where the first column gives the type of experiment in Lipps’ 
notation, while the columns to the right indicate the Rayleigh numbers, N - 1 and 
the non-dimensional kinetic energy. 

If one includes the case E of fully three-dimensional convection then the mean 
value of a is 9.05 2 0.30 while, without the case E ,  a = 8.95 2 0.12. We see that the two 
different methods of computations, over a rather broad range of the Rayleigh and 
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t y p e  
A 
B 
D 
0 - 2 0  
E 
E-2D 
P1 
P 2  

R 

4 000 
4 000 
9 000 
9 000 

25 000 
25 000 
6 500 
6 500 

N - 1  
0.75 
0.88 
1.22 
1.25 
1.94 
1.89 
1.05 
1.08 

K 

38.4 
45-5 

134-3 
135- 1 
482.3 
503.4 

86-7 
86.9 

TABLE 3. Values of a calculated from Lipps’ (1976) data. 

a 

8.84 
8.80 
9.04 
9-13 

10.03 
9.69 
8.87 
8-99 

Prandtl numbers, give, with a good accuracy, an approximate constancy of the 
coefficient a which is about 9 for the rigid boundary case with an accuracy of a few 
per cent, surprisingly close to our rough estimate a z 8. The results of Veronis (1966)) 
though there are only two numbers available for free boundary conditions, are also 
close to our estimate. 

The fact that the coefficient a appears to be very nearly universal confirms our 
estimate (3.1) and reflects a very simple physical interpretation of the formula for the 
mean (dimensional) kinetic energy K of a unit column. From (2.2) and (3.2), it  follows 
that 

K z a-2yf7y, 7” = d 2 r 1 .  (4.4) 

One sees from here that the kinetic energy K is of the order (with a factor a-2) of the 
mechanical power C = yf generated in the fluid by the heat supplied, times the viscous 
relaxation time 7y. 

One may also calculate the Reynolds number for the convective motions. 

where K ,  is the non-dimensional kipetic energy, measured in k W 2  units. From the 
data of table 3, it varies from 8.8 ( A )  to 32.4 ( E ) ,  and the question arises concerning 
the limits of applicability of the results obtained in terms of values of the Reynolds 
(or Rayleigh) number. The question was especially acute for the author because 
originally a formula of the type (3.1) had been obtained from similarity arguments 
when Re < 1 (upper mantle; Golitsyn 1 9 7 7 ~ ) .  However, the derivation, presented here 
(also given there as an explanatory one) does not require explicitly the smallness of Re. 

Even larger values of Re are obtained in analysing the results of detailed com- 
putations by Williams (1967, 1971) concerning convection energetics in rotating 
annuli, heated differentially. It happens that the energetic relations described here 
are also found there. Though the heating from side walls and rotation decrease the 
efficiency of convection by several times in comparison with the case of heating from 
below, nevertheless, if the specific dissipation is known, the mean velocities can be 
estimated as 

U M (e/32v)t d (4.6) 

U 2 (~/72v))  d (4.7) 

for the two-dimensional or axisymmetric case (Williams 1967), and as 
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for the three-dimensional case when baroclinic waves appear in an annulus (Williams 
1971). I n  fact, in the first case, the data of the direct computations allow one to deduce 
U = 2.6 mm s-l and E = 3 x om2 s--3. Using this value of E and the annulus depth 
d = 5 cm one gets, according to (4.6), U w 2.4 mm s-1. For the wave regime the results 
of the computations yield U = 1.2 mms-1 and e = 1.1 x cm2 s - ~ .  Substitution of 
this E and d = 3 cm into (4.7) produces U = 1.1 mms-1. More details may be found in 
Golitsyn (19773). 

The values of the Reynolds number for these two cases are 80 and 35, respectively. 
On the one hand, the values are large in the sense that boundary layers are relatively 
thin, but on the other hand the values are still sufficiently small that the flow patterns 
are regular and laminar though rather complicated; the viscous forces essentially 
determine the patterns and the velocity gradients are appreciable even in the bulk 
of the fluid. 

I n  an attempt to understand why this theory works even at rather high Reynolds 
numbers, one may formally introduce the Kolmogorov internal microscale (3.3), if 
the value of e can be evaluated. For Williams’ first case one gets 7 = 1.8 mm and for 
the second, 7 = 1.3 mm. The ratio of the scale d to 7 is equal to 30 and 17, respectively. 
Apparently, if Hk = d/7 - Re+, 

the flow has a laminar or slightly irregular character and our theory may be extended 
to these conditions, though one must not expect similarity of the flow patterns for 
Re? 1. 

However, Williams has published detailed results only for these two cases. In  order 
to see whether the agreement is not fortuitous (results in tables 2 and 3 were obtained 
much later) I began to consider the possibility of an experimental check of equations 
(3.1) or (3.6) for larger Reynolds numbers. Finally, two sets of experiments were 
carried out, one for qualitative information, and another for a complete check of the 
dependence of the mean velocities on the external parameters including a determi- 
nation of the value of numerical coefficient a in the three-dimensional case. 

The idea of the experiments was first conceived while watching the behaviour of 
grains and bubbles in soup standing on a slow fire. Their velocities were seen to be of 
the order of few centimeters per second, the right order of magnitude according to this 
theory. The hope was that simple measurements could be made from the trajectories 
of the particles which, in part, were almost rectilinear and horizontal though rather 
irregular in space and time; but that required only the sufficient statistics. 

I n  the first series of experiments (carried out in my kitchen during two late evenings) 
the linear dependence of the mean velocities on depth was checked while other para- 
meters remained fixed. I n  the first evening the ‘ technology ’ of the measurements was 
worked out. The preliminary results showed an approximate proportionality between 
?i and d. I n  the second evening a series of measurements was performed and the 
results are presented in figure 3. 

Here is a description of the ‘technology’ of the experiments which any reader may 
carry out by himself with a stop-watch and couple of hours of spare time. To measure 
distance I had drawn with a ball-point pen, a I-cm grid a t  the bottom of white 
enamelled saucepan 20 cm in diameter. The pan was in a water bath, consisting of 
wide frying pan, the saucepan standing on three small pieces of wooden rod icm 
high. The depth of the water in pan was about 2 cm, and the entire construction was 

(4.8) 
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FIGURE 3. Dependence of the mean horizontal velocity on depth. Upper dots with bars (dispersion) 
for thermal convection, lower dots for density convection in gasified mineral water: ul = d f T , ,  
maximal velocities; u, = d/T,, mean velocities. Circles and crosses correspond to  water from 
different bottles. 

on a slow constant gas burner. On a nearby stove was a large teapot on a small burner 
with water of about the same temperature, which was used to add water to the pan 
to compensate for evaporation and to change the level of the water in the saucepan. 
The temperature in the bulk of water in the saucepan was measured by a laboratory 
mercury thermometer and during the entire time of measurement, it  was 83 5 1 "C. It 
changed little during the measurements and so if one is interested only in the check 
of the U K  d dependence, it is not necessary to have the thermometer but one should 
keep all the burners constant. The depth of the water in the kettle was measured by 
a ruler. The choice of tracers was a problem a t  first, but I found that almost any dry 
organic powdered material will serve, because, becoming wet, it has practically 
neutral buoyancy. In  the experiment described I used tea, powdered by myself, and a 
dry red wild rose berry. 

Most of these particles lay a t  the bottom, some were on the surface but some were 
transported within the water. Their path was observed by eye on the co-ordinate 
grid and the time of travel over rectilinear parts was measured by the stop-watch. I n  
the main series, the measurements were carried out for 8 depths from 2 to 10 cm. For 
each layer there were about 35 individual measurements of path and time. During 
the time of measurement a t  each depth, a layer of water about 3 mm thick evaporated 
and the horizontal size of the points in figure 3 reflects this fact. The vertical bars in 
figure 3 show the dispersion which is in range of 15-20%. Through the first six points 
one may draw a direct line, but some deviation of the last two points can be seen. 
This is discussed below while considering the results of more complete experiments (see 
figure 4). Note that these two points correspond to Reynolds numbers Re 2 2000. 

The other series of experiments aimed at a complete check of equation (3.6) was 
performed under laboratory conditions with the assistance of A. A. Grachov. The 
measurements of velocities were carried out as described above, but the 'technology' 
was somewhat more complicated. The side walls of another cylindrical vessel 16 cm 
in diameter were covered by asbestos for heat insulation, and instead of the water 
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FIGURE 4. Check of the relationship (4.8) by data of 
measurements in water (see text). -, Rs,. 
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bath, a wet sand bath was used. The pan was standing on an electroplate with variable 
voltage (from 150 to 250V). By changing the voltage and the water depth (from 2 to 
7cm) we achieved a rather broad interval of Rayleigh numbers. In  the process of 
measurements the wetness of sand was also changed, affecting the heat transfer to 
the kettle. 

The heat flux was determined in the following way. After the temperature in the 
vessel had become constant, it was weighed on an electronic scale with an accuracy 
of 0.1 g. The initial depth of water was determined by the difference in weight between 
the filled and empty vessel and by its internal diameter. Then during the next 10 
minutes or so, we did about 30-35 individual measurements using the tea particles. 
After this, we again checked the temperature of water and made a new weighing. 
Knowing the time between two successive weighings, the amount of water evaporated 
and the heat of evaporation, one can find the heat flux f, spent for evaporation, 
which was found to be about 8&90% of the total heat flux introduced into the kettle. 
The rest consisted of heat flux radiated from the water surface and the flux causing 
convection in the air above the water. The first part was estimated by the formula 

where CT is the Stefan-Boltzmann constant and indices w and a relate to the water 
and air (also the ceiling and wall of the room). 

The flux causing convection in the air was estimated by the relationship 
N = 0.13 Ra*, wherefrom 

f, = 0 . 1 3 ~ ~ ~  k f ( ~ ~ ) +  (ag/v)*. (4.10) 

This formula describes the heat transfer from a heated plate into a medium, the mean 
temperature of which is AT = T,-T, lower. The formula as well as equation (4.9) 
requires a knowledge of the water surface temperature T,, which is lower than the 
mean water temperature. The value of T,, was found by the following method of 
successive approximations. It is based on equation (3.31), which expresses the drop of 



Theoretical and experimental study of convection 589 

temperature in the thermal boundary layer in terms of the heat flux and material 
parameters of the fluid. In  the first approximation we used the value of the heat flux 
spent on the evaporation, f,. Then equation (3.31) determined the temperature drop 
AT! in the cold film with some underestimate. The value of T,,, = T, - ATl then 
determined the water surface temperature T,, with some overestimate. The value of 
Twsl was substituted into equations (4.9) and (4.10) and the total heat flux 

fl = f e  + f r l  + f C l  

was calculated. The value offl was then used again in (3.31) and so on. The procedure 
converged very rapidly and to determine the water surface temperature with an 
accuracy of 1 "C one iteration was found to be enough. 

Material constants of the water and their dependences on temperature (which 
varied in individual series from 55 to 75 "C) were taken from tables. The dependence 
(3.6) of the mean velocity on external parameters (the Nusselt number, of course, was 
large) can be presented as a relationship between Reynolds, Rayleigh and Prandtl 
numbers as 

Re = (aP)-l. (4.11) 

The results of our experimental check of this relationship are given in figure 4. The 
Reynolds number was determined using the horizontal velocity component measured, 
the depth of the fluid and the viscosity a t  the mean temperature of the water. The 
Rayleigh flux number Rf was calculated using the measured heat flux f and other 
material constants at the same temperature. The value of the coefficient a was first 
found as a mean value of a, calculated for each set of individual measurements from 
at = (ctgf/,ucP)4/u, for Re < 1500. Though this is not an optimal way to determine 
the value of a, it  produced a = 13 2. Only the dark points were taken into account, 
the circles representing measurements by A. A. Grachov and triangles those by the 
author. Evidently, the personality of the experimenter does not influence the results 
of the measurements. The dashed line correspond to a = 13. The regression line 
between the values of R$/13P and Re was calculated and the regression coefficient 
was found to be 1.023. Taking this value into account and also the dispersion of the 
coefficient, the final value of a from these measurements is equal to 12.7 f 1.4. 

Next, an attempt was made to see whether the points of my previous measurements 
checking the proportionality between u and d were consistent with the dependence 
(4.11). Since the temperature was measured and kept constant within k 1 "C in all 
measurements presented in figure 3, the heat flux can be estimated using the value 
found for a and equation (3.6). For this estimate the first four points of figure 3 were 
used and the heat flux was estimated with a scatter of about 20%. All the points of 
figure 3 with their mean value off were then adjusted to the relationship (4.11) and 
were plotted on figure 4 as light triangles. Among them there are also a few points of 
the first evening of my experimental activity when the temperature was also measured 
and was about 90 "C. The relative behaviour of the light triangles is in fair agreement 
with the data of later, more complete measurements. 

As a whole, the data of figure 4 allow one to conclude that (3.6) or (4.11) hold up to 
Re 5 1500, perhaps 2000, and the experimental estimate of the coefficient a is quite 
close to its crude theoretical estimate a z 12. At higher values of the Reynolds number 
there is a systematic deviation of the measured velocities, connected evidently with 
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the appearance of a regime of developed turbulence, when different relationships are 
acting (see 4 5 ) .  

There is another type of convection which has been studied extensively by numerical 
and laboratory experiments, the results of which also give the possibility of a check 
upon some of the dependencies obtained here. This is the convection within a fluid 
arising from cooling a t  the upper surface. It has been studied theoretically by Howard 
(1966), numerically by Foster (1971) and in laboratory by Katsaros et al. (1977) and 
Ginzburg et al. (1977). One of the basic results here is that the convection has a quasi- 
cyclic character. The major part of the cycle is occupied by the growth of a thermal 
boundary layer near the surface due to molecular heat exchange with the colder 
medium above. This layer is often called a ‘cold film’. When it is heavier than the 
bulk of the fluid and the film becomes thick enough, cold thermals form from it, 
plunge down and mix the fluid rather quickly; then the process repeats itself. It is 
clearly important for studying the heat and salt budget in the upper ocean so it has 
attracted considerable attention. 

The picture of the convection just described was first proposed by Howard (1966) 
who estimated the period of the cycle as r N d2k-lR-8 [see equation (3.26)]. It was 
confirmed in numerical computations by Foster (1971) who obtained the formula 
(3.8) and determined the value of a to be equal to 14 according to his computations. 
In  the work by Ginzburg et al. (1977) such a picture was observed experimentally. 
They present several durations of individual periods which agree with equation (3.8) 
at a = 14 within an accuracy of 20%. By the author’s request these experiments 
were continued with the aim of systematic checking of equation (3.8). In the measure- 
ments the temperature was registered as a function of time at  a fixed point 3mm 
below the water surface for various temperature differences between water and air. 
The heat flux from water to air was determined calorimetrically. The range of con- 
ditions can be defined by the Rayleigh number R f .  If as a length scale one takes the 
depth of the tank then Rf varied between 3 x lo9 and 5 x 1O1O. In detail, the measure- 
ments and their results are described in a note by Ginzburg, Golitsyn & Fedorov 
(1979) (see also Ginzburg et al. 1977). Of course, the space-time pattern of the develop- 
ment of the thermals is rather chaotic, and so the single-point measurements of T( t )  
allow one to estimate the convection time scale only if the measurement is long enough 
for sufficient statistics. The treatment of a large amount of data (the records of a total 
duration of about 30 hours with individual cycles being from 15 to 75 seconds) gave a 
rather high correlation coefficient between measured values of a and the calculated 
ones using (3.8), equal to 0.88. The value of the coefficient a obtained by calculating 
the regression line was found to be 12.1 

One should not exclude the possibility that such a close coincidence with the value 
of a = 12.7 f 1.4 obtained in the experiments described previously may be to some 
extent fortuitous, but the fact of the existence of regularities of the type (3.6), (3.8) 
or (4.11) over certain broad ranges of conditions, whatever the numerical coefficients 
are, seems to be established for various types of thermal convection. On the other 
hand, this coincidence bears witness to a symmetry of convective regimes with respect 
to simultaneous changes in signs for heat flux and buoyancy force. That means that 
instability processes causing convection in the lower thermal boundary layer, where 
to the heat is introduced, are similar to the ones in the upper thermal boundary layer 
from which the heat is extracted. 

2.3 (standard deviation). 
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5. Turbulent convection 
A turbulent regime of convection sets in at  very large Rayleigh or r.m.s. Reynolds 

numbers, when the influence of viscosity in the bulk of the fluid becomes insignificant, 
and the regularities found in $ 3  are replaced by another set. It is in this sense that we 
are considering the regime of developed thermal turbulence, because in the laboratory 
experiments described in 4, although the pattern of particle motions was irregular, 
the r.m.s. velocities still depended on the viscosity. 

The turbulent regime was considered in detail by Kraichnan (1962), using mixing 
length concepts. Some of his results which are needed here can be reproduced very 
simply. Experimental data on measured convective velocities in this regime have 
been summarized by Garron & Goldstein (1973). As we shall see, our data for Re 2 1500 
qualitatively agree with them. In conclusion we show the possibility of a decrease of 
the rate of growth of heat transfer with Rayleigh number for very large R. 

We shall start from the vorticity equation (1.8). In a steady state the main balance 
in the turbulent regime will be between advection terms and generation of vorticity 
due to buoyancy. We assume that the scale of largest energy containing eddies is 
comparable with the layer depth d.  Then from (1.8) and equation (1.9), written as 

one can obtain the following scale estimates for the velocity and enthalpy gradient: 

Ve = (f/p)* y;* d-l, yo = d / H .  (5.2) 

ST - (f/p)%y,fcil. (5.3) 

From the last formula, there follows an estimate of the temperature difference for the 
bulk of the fluid: 

Formulas (5.1) and (5.3) are quite similar to the formulas for the distributions of 
velocity and temperature in the atmosphere in free convection, which are obtained 
immediately if one substitutes into (5.1) and (5.3)) the running height z for d and 
remembers that for a gas tl = 1/T, where T is characteristic temperature of the 
environment. Let us note that a formula of the type (5.1) was first obtained by Prandtl 
(1932) and of the type (5.3), by Oboukhov (1960), both being derived by similarity 
and dimensional arguments while here we use a scaling analysis of the equations. 

The connexion between (5.1) and the theory of turbulence by Kolmogorov and 
Oboukhov becomes evident if one recalls that due to (2.30), f / p H  = 6 ,  the rate of 
dissipation of kinetic energy of turbulence. Therefore for turbulent convection the 
dissipation is cubic in the velocities, which is intrinsic to the inertial subrange of the 
turbulence, while for the viscous regime the dissipation is quadratic in the velocities. 

Equation (5.1) can be rewritten as U = (yofM-ld)*, where M = pd is the mass of a 
unit column and yofM-l  = e. The role of the efficiency of convection yo = d / H  is 
again evident in transforming the rate of supplied heat into the rate of generation 
(and dissipation) of the kinetic energy in turbulent convection. 

Now we use the scales (5.1) and (5.2) to non-dimensionalize the system (1.8), (1.9). 
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FIQURE 5. Check of the relationship p% Re .- fi for the turbulent regime of convection. 0, the 
dispersion of the vertical velocity component (after Garron & Goldstein 1973); 0 ,  mean values 
of horizontal velocity component after figure 4. 0 ,  1; 7 ,  2; 0, 3; JJ, 4; 0, 5; m, 6; A .  7 ; h ,  
8;  A ,  9; 0, 10; D, 11; 0 ,  12; v ,  13. Pointsnumbered 1, 2, water; 3-6, acetone, Malkus (1954); 
7-9, air, Deardorff & Willis (1967); 10,11, water, Garron & Goldstein (1973); 12,13 water, memure- 
ments by A. A. Grachov and the author. 

Neglecting for simplicity internal heat sources and heating due to viscous dissipation 
we obtain 

d w  1 
-- ( o . V ) v  = - V e x n + - A m ,  
dt Re 

de 1 
dt P e  
- = - A T ,  

ae 
- = - P e  at z = O ,  e = O  at z = 1 .  ( 5 4  az 

Here all the values are non-dimensional. The relationships between Reynolds, 
PBclet, Rayleigh and Prandtl numbers follow from their definitions and (5.1): 

Re = (f d / p H ) i  d / v  = a, P-8 Rf, (5.7) 

P e  = Re P = a,(PRf)), 15.8) 

where a, is a numerical coefficient which has to be determined experimentally. 
Equation (5 .7 )  corresponds to (6 .12)  of Kraichnan (1962),  if one takes into account 
that in a turbulent regime R, = N R  = R*. 

Garron & Goldstein (1973) present a summary of measurements of vertical velocity 
w at mid-level for convection in a layer between rigid horizontal boundaries. The data 
occupy the range of Rayleigh numbers from lo5 to 3 x lo9 which, for N = 0-13Ri ,  
corresponds to R, from 6 x 106 to 6 x 1012. The entire set of data is described more or 
less well by the dependence 

where the coefficient was determined by the present author with an accuracy of about 
3%. One should note, as do Garron & Goldstein, that the dependence (5.9) is fulfilled 
in average for the whole interval of Rayleigh numbers under consideration, but data 

P% Re, = 0.37R%, (5.9) 
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of individual authors lying at  various parts of the interval form, as a rule, less steep 
subsets whose end points may deviate from (5.9) up to 60%. 

Our figure 5 represents the summary by Garron & Goldstein together with our 
‘solid’ points from figure 4. The straight line corresponds to (5.9). We see that for 
R 2 3 x lo7 our points are parallel to the line 0.37% while for smaller R, they form 
a steeper sequence ( - R+ or - ~ $ 1 .  Note a small scattering ofour points a t  R 2 3 x 107: 
they deviate (in the r.m.5. sense) from the line P*Rek = 0.99 RS by no more than few 
per cent. 

In  a comparison of the numerical coefficients, 0-37 and 0.99, one has to consider the 
following circumstances. First, a three-dimensional flow, if it  is isotropic, the mean 
horizontal component measured by us is 24 = 1-41 times larger than the vertical one; 
this makes the difference between numerical coefficients less than two-fold. Second, 
equation (5.9) describes the results of experiments with both rigid walls while we have 
a free upper surface. It is known that a free surface always causes increased velocities 
and heat transfer (see, e.g. Herring 1963, 1964) which makes a difference between the 
coefficients natural. Finally, we cannot exclude the possibility that in visual measure- 
ments, an eye tends, purely unconsciously, to select particles with somewhat enhanced 
velocities, though we both (Grachov and I) tried by all means to avoid this. An objective 
instrumental check would be desirable, but nevertheless, the small scatter of points 
measured by the two of us and their consistent R+ dependence does give some credence 
to our measurements. 

There is another aspect requiring further instrumental study. At R 5 3 x lo7 the 
values Re, (horizontal) are definitely following the dependence (4.11) while r.m.s. 
fluctuations in w seem better to be described by (5.9) down to R - lo5. There is the 
impression that regularities of the developed turbulent regime begin to act appreciably 
earlier for the vertical velocity component than for the horizontal one. 

For the horizontal component one can introduce an ‘index of the development of 
turbulence ’ as 

(5.10) 

If I > 1 the regime of convection can be considered as fully turbulent in the sense of 
its dependence on the external parameters; otherwise the relationships of the viscous 
regime are appropriate. However one sees again from equation (5.10) that the tran- 
sition from one regime to another one is very smooth because of the small exponent 
in Rayleigh number in (5.10). The transition interval depends also on Prandtl number 
and for small P the turbulence starts earlier with R than for large P. This statement is 
in a qualitative agreement with observations by Rossby (1969) who noted that the 
convection in mercury (P = 0.025) seemed to be turbulent much earlier with R than 
in water or, moreover, in an oil with P = 200. It would be of interest to study this 
question quantitatively. 

It is interesting to compare our estimates of convective velocities with an estimate 
often used (see, e.g. Veronis 1966) which is believed to be an upper limit: 

w2 < ugATd. (6.11) 

This estimate is obtained by the assumption that the potential energy released during 
the ascent of a fluid particle is more than or equal to the kinetic energy acquired by 
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the particle. It will be shown that this is not always the case. In  the viscous interval 
using (3.9) and (2.15) we obtain an inequality from (5.11) 

N - 1  < asp. (5.12) 

Because a2 - 1 0 2  the inequality is usually satisfied easily, but the case of small P 
causes suspicion. The computations by Veronis (1966) in fact supply a counter- 
example to (5.12). In  our § 3 we have calculated a = 7.68 at P = 0.005 and N = 5.676. 
With these values the right-hand side of (5.12) is almost 20 times smaller than the left 
hand side ! 

This fact shows that juxtaposing the released potential energy and the kinetic energy 
is not an evident thing, but one should consider the total energy cycle. If we call the 
right-hand side of (5.12) the available potential energy A (a rigorous definition of this 
concept has been given by Lipps 1976; one finds that the value of agATd is an upper 
bound to A) ,  then the equations for K and A do not provide any restriction on the 
relation between K and A ,  but they do for the rates of transition between these types 
of energy. The smallness of the Prandtl, number implies the relative smallness of the 
kinematic viscosity, and therefore the viscous relaxation time r,, = d 2 / v  is relatively 
large. Then equation (4.4) K z ya-”f7,, valid in the viscous regime, means that the 
kinetic energy may be large even relative to available potential energy, which is built 
up by thermal factors and in particular by the large heat conductivity. The last 
provides a quick restoration of potential energy within the fluid at  the expense of 
heat reservoirs. Because of this small relaxation time, the potential energy can 
maintain a much larger kinetic energy of convection in fluids with small P. 

For P 2 1 the inequality (5.11) is too loose. For example, consider the data due 
to Lipps in our table 4. For R = 4000 we have N - 1 = 0.75 and a = 8.8, which means 
from (5.12) that 0.75 < 8 ~ 8 ~  x 0.7 = 54. For R = 25000 (case E )  we similarly obtain 
1.89 < 70. We see that the estimate (5.11) is either too loose (at P 2 I),  or invalid. 
Nature is basically simple, but we should not always expect to get a right answer 
using a naive approach. 

In  the conclusion of this section, we will briefly discuss what could produce equation 
(3.20): N - Pe3; or with our scaling, (5.8): Pe = (RfP)*. From here and from the 
definition R, = N R  we obtain 

N - (PRf)* - PAR). (5.13) 

If such a regime of heat transfer exists it would mean breaking the ‘principle’ of 
locality of the heat transfer owing to convection, according to which the heat flux f 
through the layer [and the thickness of the thermal boundary layer 6, see (3.30)] 
should not depend on the total depth of the layer. Invoking this principle gives the 
usual explanation of the law N N R+, or f - AT#. For the dependence (5.13) one gets 
f - d-fAT+. Whether such a decrease of the heat transfer growth rate with R exists 
could be determined only experimentally. Exponents smaller than Q have been 
obtained by many: for instance, Garron & Goldstein (1973) obtained N = 0.13 R0.293 
in water in the range 1.3 x lo7 < R < 3-3 x lo9. Note that Kraichnan (1962) predicted, 
vice versa, an increase of the dependence N ( R )  with R compared with N - R* for very 
large Rayleigh numbers. To the author’s knowledge such an increase has never been 
observed. 

In  this connexion experiments measuring the heat transfer at  R > 1010, say, would 
be highly desirable. As far as the author knows such experiments for a plane horizontal 
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layer have not, yet been reported. In  any case the dependence (5.13) should be con- 
sidered only as a possible ultimate asymptotic for very large R. I n  the turbulent regime 
one might expect the existence of an intermediate zone, or boundary layer, where a 
temperature gradient is maintained by convection so that N N Rt, but in the bulk 
of the fluid equations (5.1)-(5.3) hold. 

For reference purposes we note that the dependencies N - Rd and 6 - d l N  - dR-4 
have been also obtained by McKenzie et al. (1974) from different arguments for the 
convection in a layer where all heat is supplied from within and these dependencies 
have been confirmed by their computations. However the computed velocities 
followed the regularities of the viscous regime, see the last equation (4.1).  This is an 
example of the existence of a hybrid regime. 

6. Density convection 
The physical reason for thermal convection is the expansion of fluid particles which, 

when heated, become lighter than their environment or heavier when cooled. But 
fluid particles may become lighter or heavier in other ways. For instance, in haline 
convection (Foster 1968), the instability arises from the formation of a heavier surface 
film owing to the increased salinity of the water by ice formation. Some geophysicists 
believe (Artyushkov 1968; Sorokhtin 1974; Keondjan & Monin 1977) that convection 
in the Earth's mantle is caused by differentiation of the mantle material, in which a 
heavier fraction is descending and a lighter one is arising. It is believed that this 
process is taking place a t  the mantle-liquid core interface, but one can only speculate 
on whether the differentiation is a t  a molecular or some macroscopic level. In  such 
an uncertain situation only the simplest phenomenological approach is justified. 

The analogy known between processes of heat and mass exchange allows one to use 
many results of thermal convection for the density convection case. However certain 
specifics of density convection require an accurate translation of this analogy and re- 
definition of some concepts. This will be done in this section. In  addition, some general 
consequences will be discussed and an experimental check of the theory will be 
presented. 

We shall use the Boussinesq approximation again in this study. In  the momentum 
equation (1. l), the only change is that p'/po replaces aT' where p' is the departure of 
the density from its equilibrium value po(z). Because the motions are slow, V . v  = 0. 
For the density deviation, one can write the equation 

(6.1) 

where pt is the rate of the density differentiation in the volume, and k, is the co- 
efficient of density diffusion, which can be interpreted in a manner similar to the 
filtration coefficient of a liquid in porous media (see, e.g. Barenblatt, Entov & Ryzhik 
1972). 

I n  addition, we have the energy equation, together with the equation of state 
p = p(T) .  If the differentiation is taking place at some surface (at the lower boundary 
of the layer, say) then it can be described by a mass flux rt ,  which is, at the same time, 
the rate of density change a t  the boundary. This mass flux should be related to the 
gradient of density deviation 

dp'ldt = Pt + k, Ap', 

rt = k,ap'/az at z = 0, say. (6.2) 
10-2 
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The other boundary conditions can be the same as for thermal convection. The total 
density flux A at a level z consists of two parts: 

Let us turn now to an analysis of the energetics of density convection. The energy 
balance equation (2.1) preserves its form but the mean rate of kinetic energy generation 
in a unit column is 

G = s," @'wg) dz. 

Now, define the non-dimensional mass flux carried by the convection, a type of 
Nusselt number (2.13)) as 

Ng = A?d/k,Ap, (6.5) 

where A p  is the difference between the densities a t  the upper and lower boundaries. 
This definition is valid when pt = 0 and in a steady state, A = r,. If pt + 0 then one 
can define a modified Nusselt number Nom in a way similar to (2.10). 

The mechanical power introduced into the flow in density convection, causing the 
motion, is equal to A g d  in a unit column. In  fact, gp' is the force per unit volume, 
gp'w = g A  is the power developed by the force and A g d  is the total mechanical 
power in a unit column of height d .  In other words, the value of A g d  is the rate of 
release of potential energy in the convection. 

The efficiency of the convection, in the sense of transforming the supplied mech- 
anical power into the rate of generation of kinetic energy, we define as 

yo = G / A g d .  (6.6) 

(6.7) 

Manipulations similar to those in $ 2  give for the case pt = 0, 

yg = (No - l)/Ng = 1 - N;'. 

If the differentiation occurs within the layer also, we obtain formulas of the type 
(2.9) and (2.10). For the case of pt = const. one such formulais 

where 

is a quantity, similar to (2.12)) determining the fraction of the density flux which 
forms within the layer, compared with the total flux which could be measured at  the 
upper surface. The difference between equations (6.7) or (6.9) and the similar equation 
(2.9) is that in the latter the rate of generation was related to the rate of heat supplied, 
but here, it  is related directly to the rate of release of potential energy. 

A determination of the efficiency of density convection allows one to carry over all 
the results of $9 2 and 3 concerning the thermal case. We write only the formula for the 
mean rate of dissipation per unit mass 

(6.10) 
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In  order to make the analogy between the two types of convection completely clear, 
we will now obtain an expression for the mass flux in thermal convection: 

At = (p'w). (6.11) 

For simplicity we consider a plane horizontal layer without volume heat sources. After 
integration of (6.1 1 )  over height, taking into account that At = const. and equations 
(2 .7)  and (2 ,13) ,  we obtain after some rearrangements 

a f N - 1  
cp N ' 

At=-- (6.12) 

Incidentally, equation (2 .9)  follows immediately from here if one remembers that 
At gd is the rate of release of potential energy in a unit column. 

If both sources of convection are present, thermal and density differentiation, one 
can introduce the total density flux 

A. =&+At. (6 .13)  

The total efficiency of convection in this combined case can be determined as 

Yo = Go/Aogd .  

Recalling the definitions (2 .3 )  and (6 .4 )  and taking into account (2 .13)  and (6 .5 )  we 
obtain 

(6 .14)  

In  the limit of large Nusselt numbers this expression tends to unity because in that 
limit, all the potential energy released is spent on the generation of kinetic energy. 
The main similarity criterion in estimating the relative role of the two sources of 
convection will be the ratio u f / c p A .  

The kinetic energy of convection is dissipated into heat. In density convection this 
will produce a heat flux even in the absence of direct heat sources, and this heat 
flux can be measured at the upper surface. If the observed heat flux is partially 
formed by direct heat sources, there is an upper bound to the density flux due to 
differentiation : 

A? -=fO/Sd, (6 .15)  

where f o  is the total observed heat flux. This inequality proves to be useful in a 
consideration of convection in the Earth's mantle, where there are radioactive heat 
sources. 

The specification of the analogy between thermal and density convection allows one 
to model one type of convection by the other. The role of the Prandtl number P = v / k  
will be played by the Schmidt number Xc = v/kD and instead of the Rayleigh flux 
number we will have 

k,Ap(Ng- l ) + k a A T ( N -  1)  
= d [A+ aft;'( 1 - N-l ) ]  ' 

(6.16) 

where Ram is an analogue of the usual Rayleigh number constructed from the density 
difference. Just as in the case of equation (3.23) one may obtain for sufficiently large 
Nusselt number that 

N, - R i  N R a i .  (6.17) 
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Some very simple experiments are now described in which some consequences of 
the analogy were checked. An everyday example of density convection is provided by 
the motion within a bubbling fluid such as gasified mineral water. However, the 
visualization of this motion and the devising of any reproducible quantitative measure- 
ments proved to be difficult. After many trials (and wasting many bottles of mineral 
water) I was finally able to invent a quick check of the independence of the time scale 
on the fluid height [see equation (3.8)] which is valid for N, 

As the working fluid I used the mineral water ‘Moskovskaya’ (from a drill hole 
within Moscow City). It was poured into a transparent glass flask in the shape of a 
parallelepiped, with sides 95 x 79 x 37 mm. It had been noted that adding small 
particles of powdered black peppert increased bubble formation strongly and also 
the intensity of the motion. A significant release of gas took place under these con- 
ditions for several hours. An experiment usually occupied 20-30 minutes so the con- 
ditions could be considered as stationary. The experiment was performed as follows. 
First a mixture of black pepper in water, about 0.5 cmz, was put into the flask. The 
mineral water was then poured into the flask to a given depth and was allowed to  
settle for a few minutes to allow the motions caused by pouring to decay. Then a 
droplet of dye (alcohol solution of brilliant green) was introduced to the surface of the 
water with a pipette. In  the water the droplet immediately formed a little cloud 
from which dye threads or wisps were pulled out. For control, a similar droplet was 
introduced into ordinary water where the usual molecular diffusion was observed but 
the dye remained mainly in the upper layer of the water. 

Two typical times were measured: the time T,, when a dye thread first touched the 
flask bottom, and the time T,, when many threads, spaced more or less uniformly, 
were touching the bottom. The first time could be determined more or less distinctly, 
but the second time was determined rather subjectively, though with an accuracy up 
to 5 seconds which corresponds to about 15-20% from the value of T,. 

Two series of such measurements have been performed with mineral water from 
different bottles. The depth of the water varied from 2 to 9cm. The results showed 
that both times, TI and T,, with the accuracy indicated, did not, in fact, depend on 
the depth nor on the bottle. Knowing the depth and time, one can determine maximum 
and mean velocities, u1 = d/T, and u, = d/T,. These velocities are shown in the lower 
part of figure 3, where different symbols relate to water from different bottles. The 
mean velocities of motion varied from 0.7 to about 4 mm s-l, the maximum velocities 
being about twice as large. 

1. 

For the shallowest layer, the Reynolds number calculated by u,, d and 

v = 0.01 crn2s-l 

is near 13, and for the deepest one, it  is about 300. The lack, in our measurements, of any 
systematic dependence of time scale T on the water depth can be regarded as a con- 
firmation of the theory presented here and of the analogy between the two types of 
convection, thermal and density. 

t Originally the pepper was tried as a tracer, but after some observations i t  was realized that 
the upward motion of the particles was caused mainly by gas bubbles attached to the particles 
or caught by them. The downward motion of the particles seemed to be from the elmtic rebound 
of a rising particle from the water surface film. Accordingly, neither type of motion reflects 
the true fluid velocities. 
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7. Applications to ocean and mantle 
The theory presented here has many applications to the ocean, but only a couple 

will be mentioned and no detailed calculations given The most evident region of 
application is the cooling of the surface layer of the ocean by a colder atmosphere. 
A cold film forms with thickness 6 determined by (3.30) and with a temperature drop 
AT according to (3.31). The heat flux from the ocean is used in evaporation, thermal 
radiation and excitation of convection in the air. If the temperature difference between 
ocean and atmosphere is known then all the components of the energy budget in the 
absence of wind (or at weak winds below about 2ms-1, Ginzburg & Fedorov 1978) 
can be estimated by the successive approximations described in § 4. Having the heat 
flux lost by the ocean, we can estimate the downward mass flux of cold water from 
equation (6.12): M, =p" z af/c,. This value should be taken into account, for 
instance, while studying the rate of cooling of the mixed upper layer of the ocean. 
If as f we take 200 W m-2, a mean value of the solar radiation flux reaching the surface, 
then At z 1 0-6 g cm-2 s-l= 300 kg m-2yr-1. 

The theory of density convection (§  5) can be used for studying the salt balance in 
the near surface layer of the ocean. A surplus of salt in this layer can arise because of 
evaporation and ice formation. Heating may also be important and estimates of the 
effects of the combined convection should use (6.13) and (6.14). 

My interest in the convection problem arose originally from attempts to understand 
motions in the Earth's upper mantle which cause movements of the lithospheric 
plates. The aim was to obtain a simple formula for the velocities of the motion, to 
provide an elementary hydrodynamical base for further geophysical considerations. 
Such an estimate without the dependence on Nusselt number was first published in 
the author's paper (1977a). An intensive search through the convection and geo- 
physical literature showed afterwards that such a formula but without estimates of 
the numerical coefficient was actually in the paper by Turcotte & Oxburgh (1967) 
[see their second formula (3.25)]. 

Because in our theory, the parameters of the medium are considered as constants, 
after McKenzie et al. (1974), it can be considered only as a very first approximation 
for a description of mantle convection. In  reality, the viscosity of the medium depends 
very strongly on the temperature and pressure (Carter 1976), and this, in turn, 
influences strongly the flow patterns and their intensity. For instance, computations 
of thermal convection in the mantle by Houston & DeBremaecker (1975) with 
Herring-Nabarro viscosity (see Carter 1976) depending exponentially on temperature 
gave a noticeable rise of the convection velocity in the regions of lowered viscosity 
and a decrease where the viscosity is large. Nevertheless, these computations, as well 
as experiments by Booker (1  976) carried out with a special oil with a viscosity strongly 
temperature dependent, show that the overall character and intensity of convective 
flows do not differ too drastically from the case of convection in fluid with constant 
parameters. One may hope, therefore, that our results will give the right orders of 
magnitude for the velocity and time scale of convection if one uses some effective 
value of viscosity. However the problem does require additional studies, numerical or 
laboratory. 

The values of the thermal convection velocities in the mantle obtained here, as well 
as in the numerical experiments, which is of order I cm yr-l seems to be insufficient, 
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since many lithospheric plates are moving several times faster. If one takes into 
account the facts that the plates are moving as a whole, dragging each other, with 
oceanic plates diving under continental ones, one would feel safer if the mantle 
motions had velocities, say, of order 10 cm yr-l. 

The structure of the fo:mula (3.6) shows that this may be attained by an increase 
in the coefficient of thermal expansion a and/or by a decrease in the dynamic viscosity. 
Hewitt et al. (1975) note that the value of a is rather uncertain and could, in principle, 
be increased by an order of magnitude, which would increase the velocities by a factor 
of 3. However, this wocld also mean that the efficiency y M d / H  = agd/c, - 1. But 
at d - H the Boussinesq approximation breaks down and one should use, at least, 
the equations of deep convection. One should also not exclude the possibility that the 
value of viscosity v = 2 x lo1’ m2 s-l, or ,u = 7.4 x 1Oz1P, adopted by McKenzie et al. 
(1974) and here, is also considerably overestimated (see also Carter 1976). Accordingly, 
it  is possible, even for purely thermal convection in the upper mantle, that U may be 
as large as 10 cm yr-1. 

Concluding the discussion of this topic let us stress again that the self-similarity 
of convection at low Reynolds and high Prandtl numbers found in $3, places labor- 
atory modelling of mantle thermal convection, including modelling the flow patterns, 
on firm physical ground. 

Let us turn now to a consideration of density gravitational convection in the mantle, 
though there are arguments against such a type of convection (e.g. McKenzie et al. 
1974). Without going into detail of the geophysics of these questions, we present here 
only some estimates of the intensity of such a convection and point out some 
constraints. 

As was shown in $ 6, since the observed geothermal flux may only partly arise from 
purely heat sources, such as the heat of radioactive decay, the inequality (6.15) 
follows A < f / g d .  Consider the whole Earth’s mantle with thickness d = 3000km, 
in accordance with the belief that the phase differentiation takes place at  the mantle- 
liquid core interface (Artyushkov 1968; Keondjan & Monin 1975, 1977). Then we 
obtain A < 2 x kg m-2 s-l = 60 gm m-2yr1. During a period of time to, the 
density of the mantle material will be changed by 

Ap w rt told = d t o / d  < f to/gd2. (7.1) 

We neglect here the non-uniformity of the differentiation rate during the Earth’s 
evolution - in the model of evolution by Monin & Keondjan (1976) this rate for the 
last four billion years changes by less than a factor of two. Taking the present value of 
f and to = 4 Aeons, one gets from (7.1) that A p  < 100kgm-3 = 0.1gmcm-3. This 
value could be increased somewhat if one assumes that some part of the heat released 
in density convection goes to the heating of the mantle and to the support of the 
differentiation reactions which are, evidently, endothermic. Then, instead of (5.15), we 
should write 

where Q is the heat power spent in a unit column for heating the mantle and for the 
support of the reactions. Nevertheless, the value A p  M 1 adopted by some 
investigators seems to be too high not only from the point of view of the constraints 
(6.15) or (7.2), but also in terms of estimates of the energy released by the gravitational 
density differentiation. In  fact, according to Monin & Keondjan (1976) and several 

< f + Q ,  (7-2) 
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other models, the total energy released during the process is of order 1-5 x 1031 J for 
the whole Earth’s history. If all this energy were brought to the surface by convection 
uniformly, then the geothermal flux would be of order 0.2Wm-2, three times the 
present value. Therefore an increase of Ap of more than 0.3 g ~ m - ~  is difficult to attain. 
The excess energy could go only to the heating of the core. If the core mass is of the 
order kg then the heating over 4 Aeons would be about 2000 K, although it would 
be less if part of the energy went for the support of the differentiation reactions. 

For illustrative purposes we present estimates of mean velocities of density con- 
vection in the whole mantle. Let 4 M 2 x lo9 kg m--2s-1. For a dynamic viscosity of 
the lower mantle ,u N loz7 kgm-ls-l = 1026P (see McKenzie et al. 1974) one obtains 
from (3.6), replacing f by c p A / a ,  that U N 1 mmyr-1. Keondjan & Monin (1977) 
assumed a value of ,u smaller by three orders of magnitude as representative for the 
whole mantle. Then U N 3 cm yr-l. To have U - 10 cm yr-l one should have justifi- 
cation to increase the ratio alp by yet another order of magnitude if one wishes to 
preserve the concept of convection in the whole mantle. 

8. An attempt to classify forced geophysical flows 
In  5 3 a close analogy was noted between the convection theory presented for the 

viscous regime and turbulence structure in the dissipation subrange in the sense of 
the dependences on the external parameters forcing the flows [compare equations (3.2) 
and (3.4)]. It appears that thermal and density convection over a certain interval of 
Reynolds and Rayleigh numbers and turbulence in the dissipation range form a family 
of flows controlled by viscosity and by the power, thermal or mechanical, introduced 
into the fluid. 

While working on convection, the author had in mind another type of forced flow, 
the circulation of planetary atmospheres. The first estimates of convective velocities 
(Golitsyn 1977a) were obtained along the line of the similarity theory for atmospheric 
circulations (Golitsyn 1970, 1973). In  both the flow is controlled by viscosity and the 
atmospheric circulation on a moderately rotating planet (see also Bourangulov & 
Zilitinkevich 1976), there is one common feature, i.e. the total kinetic energy of 
both the atmospheric circulation and of the viscous fluid convection does not depend 
on the mass of the flow. 

For convection, this follows from (3.1). In  fact, if one considers a unit column of 
the viscous convecting fluid, then 

pd d2f N - 1  fd3  N - 1  K==&pdu2~-- -=--  
2 a-2pvH N a2vH 2N ’ 

Since the Nusselt number N = fd /pc ,kAT = f d / h A T ,  where h is the coefficient of 
heat conductivity, is independent of the properties of the medium, equation (8.1) 
demonstrates the independence of the kinetic energy K of the column from its mass. 

For turbulence in the dissipation subrange, one should consider a volume with size 
less than Kolmogorov’s microscale d < T ,  determined by (3.3), and calculate its 
kinetic energy K‘ relative to its immediate environment, expressing the total mech- 
anical forcing in the volume as E = pea3. The value of K’ is then found also to be 
independent of the mass of the volume. 

The kinetic energy of the global atmospheric circulation is of order 

K M 21ra*c;*qkr~, (8.2) 
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where cr is the Stefan-Boltzmann constant, q = $qo( 1 - A )  is the mean intensity of the 
solar radiation flux reaching the planet with albedo A ,  and r is the planetary radius 
(Golitsyn 1970, i973). The independence of the kinetic energy of the flow from its 
mass is another feature which might be used for classification. This property is a 
reflexion of the insignificance of advection nonlinear terms in the momentum equation 
for an overall energy balance. For convection a t  P 9 1, it  is evident and it remains 
valid until the regularities of the viscous regime take over. For planetary circulations, 
this property follows from geostrophy of the motion and the dependence of the scale 
of large-scale motions on the Coriolis parameter (details can be followed in the paper 
by Bourangulov & Zilitinkevich 1976). However anumber of forced flows donot possess 
this property, but together with the ones mentioned here, they have another more 
general feature which we shall now discuss. 

Equation (8.2), after some simple transformations, can be rewritten as 

K - Qr/ce, (8.3) 

where Q = 4m2q is the total power of the solar energy assimilated by a planet, 
c, = (RT,)j is the isothermal sound velocity and T,  = (q/u)a is the equilibrium radiation 
temperature of the planet. The quantity T, = r / c ,  is the shortest time for propagation 
of a perturbation in the atmosphere over a global scale. It is known (see Landau & 
Lifshits 1954) that a state of local thermodynamical equilibrium is reached in a system 
of size d in  a time d / c .  Therefore to within a multiplier of order unity, the total kinetic 
energy of the circulation is 

K - &re, (8.4) 

that is, it  is equal to the total radiative power assimilated by a planet times the 
shortest time of perturbation relaxation on a global scale. 

But for the factors efficiency of convection y times a-2, both types of convection, 
thermal and density, have the same structure for the formulas for the total kinetic 
energy of a unit column. For thermal convection it has been already established by 
equation (4.4). For the density convection using. the analogy established, one can 
also write 

K M a-2Q,r,,, 

where Q, = ye&gd is the mechanical power introduced into the system and rv = d 2 / v  
is the viscous relaxation time. 

The same structure appears in the corresponding formula for the relative kinetic 
energy of a volume with size d c 7. In  this case Q, = eM = pea3 = e1d3 where el is 
the rate of dissipation of kinetic energy of turbulence per unit volume. 

A corresponding form can also be given to the expression for the kinetic energy 
of a volume of locally isotropic and homogeneous turbulence relative to a neigh- 
bouring fluid volume of the same size 7 c d < L,, where L, is the turbulence external 
scale, so that d lies in the inertial interval (Kolmogorov 1941). The energy of such a 
volume with the mass M = pd3 is 

K M M(ed)g M Q,d/(ed)*, (8.5) 

where Q, = Me is the total energy flux into the volume. In  the inertial range of 
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turbulence (Ed)*% U ,  the relative r.m.8. velocity for two points separated by the 
distance d,  and 

K M Q,d/U = Q,r,, (8.6) 

where r, is a characteristic lifetime of eddies with scale d. 
Note, however, that locally isotropic and homogeneous flow in the inertial subrange 

does not belong to the class of flows whose kinetic energy (in our relative sense) does 
not depend on the fluid mass: since E = Q / M ,  the energy, from (8 .5 ) )  is proportional 
to M-*. An analogous dependence of the total kinetic energy on mass has been also 
obtained in some models of general circulation, considered as large-scale convection 
on slowly rotating planets (Leovy & Pollack 1973; Burangulov & Zilitinkevich 1976) 
and in these models one may also obtain formulas of the type (8.5). The turbulent 
convection considered in $ 5  also belongs to this type of flow. Together with the 
circulation models and turbulent flow in the inertial range it forms a family of flows 
with mean velocities proportional to (Ed)*. This class of flows may be called a family 
of forced flows controlled by inertia forces and turbulent mixing. 

We see, therefore, that for quite a number of forced geophysical flows their total 
kinetic energy is determined by the product of the total power brought into the fluid 
and a characteristic relaxation time. Note that in the cases considered here this time 
is always the smallest of all the times which can be constructed from the external 
parameters of the problem. It is true that this time is often unique if one believes in 
the validity of the corresponding self-similarity hypotheses, which results in the 
exclusion of some dimensional parameters. Nevertheless, these examples allow one to 
propose the following approximate rule which could be called a ‘principle of the 
fastest response’: the kinetic energy of a forced steady flow of a fluid system is of the 
order of the total power brought into the system times the shortest relaxation time 
characteristic of the system. 

If one is not using similarity theory, this rule allows one to write at once an expres- 
sion for the total kinetic energy of the motion. It was this ‘principle’ that was noted 
in 1970 for the general circulation and was used in a first attempt to obtain an expres- 
sion of the type (4.4)) but without accounting for the convection efficiency y and the 
multiplier a--2. 

We see that in the flows considered here the adherence to the ‘principle of the 
fastest response’ is their most general property. However, i t  is not universally true. 
An example of a system where it gives, a t  best, a lower bound of the kinetic energy is 
provided by the circulation in atmospheres of large and rapidly rotating planets such 
as Jupiter and Saturn. A detailed discussion of their circulation was given by Golitsyn 
(1970, 1973). It seems that the rapid rotation is a factor, strongly stabilizing large- 
scale motions and preventing the system from relaxing in the fastest way. Never- 
theless, it appears that this ‘principle’ may have sometimes a heuristic value, as it 
has had in this study for which it served as a very first insight. 

During the long work on this subject I discussed various aspects with many people 
and I can thank here only some of them. The first, who brought my attention to upper 
mantle convection in October 1970, was V. P. Troubitsyn who suggested that I seek 
to apply similarity arguments to this problem. Discussions with him, V. N. Zharkov 
and later, with P. N. Kropotkin helped my understanding of the problem. An impulse 
for returning to the problem after six years was derived from reading the paper by 
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Hide (1977) where there was a reference to McKenzie et al. (1974). Of much use and 
importance for me were several reprints which D. P. McKenzie sent to me and I 
appreciate very much his quick and kind reaction to my questions. Various parts of 
the work were presented in many seminars and the comments of many people were 
helpful and elucidating. 

I am especially thankful to G. I Barenblatt for many discussions of theoretical 
problems and to A. S. Gurvich, Yu. L. Chernous’ko and K. N. Fedorov for advice 
and discussion of the experiments. Finally, I wish to thank my wife, Ludmila, for her 
help and patience with my home experiments and with my long and numerous 
attempts at writing and rewriting this paper. 

Appendix. Similarity and dimensional arguments in application to 
convection in the viscous regime 

A derivation of the formula for the mean kinetic energy of convective motions from 
similarity and dimensional arguments a t  small Reynolds numbers, but without the 
multiplier 1 - 27-1 ,  is in the authors paper ( 1 9 7 7 ~ ) .  Convection of a viscous fluid 
presents an instructive example of a concise use of modern ideas of similarity and 
dimensional theory, and this will be demonstrated in this section. 

For simplicity we restrict ourselves by the case Re < 1 and neglect the internal 
heat sources and the viscous dissipation in the energy equation. Then the system 
(1.8), (1.9) is 

uHAw = Vexn, o = Vxv, (A 1) 

deldt = kAe (A 2) 

ki?e/i?z = - f /p at z = 0 and e = 0 at z = d .  (A 3) 

with boundary conditions of v = 0 at the surface and bottom, say, and 

The system (A 1)-(A 3) has certain group properties. They were noticed by G. I. 
Barenblatt who proposed the idea of the following derivation of our formula (3.6). 
The structure of our system allows one to consider the dimension of the enthalpy as 
arbitrary, but then the dimensions of the other external parameters will be as follows: 
[uH] = [b] = [el LT [note that in (A 1) the combination uH = b enters and because 
we neglect the inertia forces and viscous heating, the viscosity u itself does not enter], 
[ f /p ]  = [el LT-l, [ d ]  = L, [ k ]  = L2T-l. Here [el  is the dimension of enthalpy, L and 
T are dimensions of length and time. 

From first three quantities one can construct a quantity with dimension of velocity: 

U = ( fd2 /pvH)+  = ( f / p H ) + d .  (A 4) 

If one considers the fourth parameter, the thermal diffusivity k, then from all these 
quantities one may construct one non-dimensional combination, the Pbclet number 

Pe = U d / k  = ( f / p H ) 4 d 2 / k  = 4. (A 5 )  

If Pe = R$ 1 then the actual value of k is not important and we can neglect it in the 
set of determining parameters. This provides another derivation of equations (3.6) 
or (A 4). Evidently this derivation alone is rigorous only at P = v / k  9 I.  If the Rayleigh 
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flux number R, is not very large, then (A 4) should be multiplied by a function 
f(Rf) = f(N(R,)). It is evident that limf(x) = 1. Therefore we may expandf(N) in a 

z-+m 

Taylor series near infinity and take only the first term f ( N )  = 1 - ( a / N ) .  It is also 
clear that as N -+ 1, f ( N )  + 0, because at N = 1 there is no motion. A function fulfilling 
the both requirements is f ( N )  = 1 - N-1. That this is really the correct function has 
been demonstrated in fj 2. Sowith some physics in mind, it is even possible to reconstruct 
a.pproximately the form of the function of the non-dimensional similarity criterion. 
Of course, such a reconstruction came to mind after the exact results had been obtained 
by other means, but some idea of its behaviour could, in principle, be developed 
without it. 

The possibility of an arbitrary choice for the enthalpy dimension may be demon- 
strated by the following arguments. The system (A 1)-(A 3) is invariant relative to 
transformations 

where a is an arbitrary number. If one assumes, as usual, that [el = L2T-2, then 
[ f / p ]  = L3T-3 and [vH] = L3T-l. Then the three first external parameters can form a 
non-dimensional quantity H = ( f fp )  d2(vH)-) .  Under the transformation (A 6 ) ,  this 
quantity changes as n-+ a)II’, i.e. it  depends on the choice of the value a, in con- 
tradiction to our main system (A 1)-(A 3). This argument shows that the dimension 
of enthalpy should be considered as arbitrary. 

Owing to the importance of the convective time scale 7 we shall derive it also from 
similarity and dimension arguments. In  a general case, including the case when 
Re 2 1, the equation system (1.8)-(1.10) has five dimensional external parameters: 
[HI = L, [v ]  = L2T-1 = [ k ] ,  [f/p] = L3T-3 and [d] = L. Only the dimensions of time 
and length enter into them, and therefore one can construct three non-dimensional 
combinations and we choose the Rayleigh number Rf = fd4/pvk2H, the Prandtl 
number P = v / k  and yo = d/H. Then the time scale will be a function of these three 
similarity parameters and the form of the function will depend on the way that we 
construct the time scale from these five external parameters. There are many possi- 
bilities. Let us choose 

e+ ae’, vH+ a(vH)’ ,  f/p+ a(f/p)‘, (A 6) 

7 = (f/pvHP Wf, p ,  Yo). (A 7) 

Various experiments and estimates show that there is an interval of rather large values 
of R, , not very small P and small yo when the function@(Rf, P ,  yo) tends to a constant, 
approximately equal to 12-13. If we know the dependence of velocity on R,, more 
precisely, on N ,  then one can obtain the dependence on N in the viscous regime, 
arguing that for N-+ 1 the value of 7 should tend to infinity and for large N ,  to a 
constant. 

For the standard choice of the time scale as d 2 / k  we should have 

and to obtain the correct result we should assume self-similarity on P and yo but 
assume that $l(Rf) N Ry* for sufficiently large Rf (outside the turbulent regime). We 
see that the time scale d 2 / k  is less natural than in (A 7) because it is clear that for 
large R,, the action of molecular thermal conductivity is restricted only to thin 
thermal boundary layers; in the bulk of fluid it should be insignificant and should not 
enter a set of determining parameters. 
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In  § 2 it  is shown for sufficiently large Rayleigh numbers, when the Nusselt number is 
large, the convection efficiency y is d / H .  From the point of view of similarity theory 
this result may be understood as follows. Accounting for dissipation means the 
appearance of one more dimensional parameter in the energy equation (A 2), i.e. the 
kinematic viscosity u by itself. Adding it to the existing parameters b = uH, d and 
f / p  gives the possibility of forming a new non-dimensional similarity parameter 

= vd/b = d / H .  In  relation to dissipation, we have a typical case of self-similarity 
of the second kind, in the terminology of Barenblatt (1978). The r.m.s. convective 
velocities (A 4) are self-similar relative to the similarity parameters Re, Pe and y ;  the 
self-similarity with respect to Re and y mean their independence from v. If we accept 
a similar hypothesis for the dissipation rate 8, then from the dimensional parameters 
uH, f / p  and d,  one could construct a quantity with the dimension of e only as a, f /pd, 
where a, = const. This was done in the first version of the author’s (1977~) paper, 
where the value of a, was determined from computations by McKenzie et al. (1974). 
Neglecting the heating from viscous dissipation means the neglect of the similarity 
parameter y = ud/b. However, this can be done while determining the dissipation 
from similarity arguments if only lima,(y) = const. But here 

Y-+O 

which is a characteristic for self-similarity of the second kind (Barenblatt 1976, 1978), 
when a certain quantity, depending on a non-dimensional parameter in its approach 
to zero or infinity, does not tend to a finite limit but changes with it by some power 
law. The character of the latter dependence cannot be determined from similarity and 
dimensional arguments only, but some other considerations should be used; here, the 
formula (A 4) for the dissipation rate. The dependence of the type 1 - N-’ as a multi- 
plier in (A 8) may be obtained again by matching asymptotics a t  N -+ co and N + 0. 

Let us mention another evident circumstance: if the horizontal and vertical scales 
of the convection region are different then one more similarity criterion, the aspect 
ratio, appears. If there are internal heat sources, their distribution and intensity should 
be characterized by a parameter of the type p, see equation (2.12). 
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Note added in proof (25 September 1979) 

S. Chandrasekhar (Hydrodynamic and Hydromagnetic Stability, Clarendon Press, 
1961) has calculated the velocity fields for the roll convection in the limit of weak 
nonlinearity. Combining his results with ours on the efficiency of convection one 
can prove that our formula for the kinetic energy is exact in this limit. Moreover 
this energy can be calculated from his results producing a = 8.81. 


